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Identification for closed-loop performance analysis

• Control performance deteriorate due to model mismatch
• High fidelity closed-loop model desired for analysis
• ... hard to obtain from first-principle or purely black-box identification

Additional knowledge:
• Reference trajectory of the closed loop (often periodic)
• Closed-loop trajectory is converging to reference

This work: Identify closed-loop dynamics by
1. modeling as linear periodic system using known reference trajectory
2. learning model parameter function by kernel-based identification from data
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Modeling: making use of the limit cycle

• When controlled along a periodic trajectory
• Closed loop exhibits limit cycle behavior

• If reference trajectory {x⋆(τ) | τ ∈ [0, T )} is known
• → Modelled as periodic systems w.r.t. orbit location

• If interested in dynamics close to reference
• → Local linear periodic model
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Transverse dynamics projection

• Define transversal hyperplanes around orbit

{S(τ) | ẋ⋆(τ) /∈ S(τ), τ ∈ [0, T )}

• Map states to transverse coordinates

x → (x⊥, τ), x⊥ : coordinates on S(τ)

ẋ⊥: converging dynamics to orbit
τ̇ : speed along the orbit

• Linearization at the orbit: x⊥ = 0

ẋ = f(x)

⇓ proj.{
ẋ⊥ = f⊥(x⊥, τ)
τ̇ = fτ (x⊥, τ)

⇓ approx.{
ẋ⊥ = A(τ)x⊥

τ̇ = 1 + g(τ)x⊥
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Identification: a function learning problem

• State & state derivative data: x(tk), ẋ(tk)
• Projection onto transverse coordinates1: x⊥(tk), τ(tk), ẋ⊥(tk), τ̇(tk)

• Problem: learn periodic function Ω(τ) : [0, T ) → Rn×(n−1)

ζ :=
[
ẋ⊥
τ̇ − 1

]
= Ω(τ)x⊥, Ω(τ) =

[
A(τ)
g(τ)

]

• Assume smoothness of Ω(τ) (requires smart choices of S(τ))
• Method: kernel-based identification

1I. R. Manchester, “Transverse dynamics and regions of stability for nonlinear hybrid limit cycles,” IFAC World
Congress, 2011.

Automatic Control Laboratory Dec. 6, 2022 4/11



Kernel-based identification
• Many interpretations: ridge / kernel / Gaussian process regression ...
• Basis decomposition: high / infinite dimensional

Ωi(τ) =
nψ∑
m=1

wimψ
i
m(τ) = WiΨi(τ), nψ → ∞

• Regularized least squares: ridge regularization

min
Wi

N∑
k=1

(ζi(tk) −WiΨi(τ(tk))x⊥(tk))2 + λi||Wi||22

• Finite-dimensional solution: linear w.r.t. kernel function evaluated at τ
datapoints

Ωi(τ) =
N∑
k=1

αi,k x⊥(tk)⊤Ki(τ(tk), τ), Ki(τ, τ ′)︸ ︷︷ ︸
kernel function

= Ψi(τ)⊤Ψi(τ ′)
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Periodic kernel design

• Convert basis function design to kernel design
• ... but common kernels does not promote periodicity

• Periodic warping to obtain periodic kernels: χ(τ) =
[
sin(2π

T τ) cos(2π
T τ)

]⊤
• Periodic square exponential kernel:

kPSE(τ, τ ′) = exp
(

−
2 sin2( π

T ⋆ (τ − τ ′))
l2

)

• Hyperparameters estimated by maximum marginal likelihood (empirical Bayes)
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Extensions

Additional operating parameters p

• Augment Ω(τ) to Ω(τ, p) with

k

([
τ
p

]
,

[
τ ′

p′

])
= kPSE(τ, τ ′) · kSE(p, p′)

Exogenous inputs u

• Augment x⊥ to
[
x⊥
u

]
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Example: Van der Pol oscillator

ẋ1 = x2

ẋ2 = µ(1 − x2
1)x2 − x1 + D sin(ωt)︸ ︷︷ ︸

exogenous input

µ = D = 1, ω = 10ω∗

• Training data: 20 trajectories
with 40 dB SNR

• Ω(τ): analytical linearization
• Ω̂(τ): identified model
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Application: airborne wind energy

• Power generation using tethered kites
• Unicycle kinematic model, figure-of-eight reference, periodically time-varying

LQR controller2

2E. Ahbe et al., “Stability verification for periodic trajectories of autonomous kite power systems,” European
Control Conference, 2018.

Automatic Control Laboratory Dec. 6, 2022 9/11



Application: airborne wind energy

• Training data: 16 loops from random initial conditions with 60 dB SNR
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Application: airborne wind energy

• Additional operating parameter: p = v/r

• Training on 4 different p values
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Identify closed-loop dynamics with periodically parameter-varying models

• A grey-box approach using knowledge of the converging trajectory
• Identification as a periodic function learning problem, solved with kernel

regression

• Transversal hyperplane selection, discrete-time case, experimental application
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