

Automatic Control Laboratory

Infinite-Dimensional Sparse Learning in Linear System Identification

Mingzhou Yin, Mehmet Tolga Akan, Andrea Iannelli, Roy S. Smith Dec. 6, 2022, CDC 2022

From parameter estimation to function learning

Parameter estimation (classical statistics, *n* ≪ *N*)

- Prediction error method (maximum likelihood estimation)
- Main issue: model structure / order selection

Smoothness-promoting learning (non-parametric statistics, $n \approx N$)

- Kernel-based identification (RKHS, Gaussian process)
- Main issue: interpretability of complexity measure

Sparsity-promoting learning (high-dimensional statistics, *n* ≫ *N*)

• Variable selection, lasso, compressive sensing

Motivation: pole location estimation

- Key in system threoretic analysis & classical control design
- ... yet often neglected in linear system identification

4th-order discrete-time system 20 dB SNR, data length $N = 100$ ARX model with known order 100 Monte Carlo simulations

• Harder for kernel-based id: complexity controlled by induced norm of RKHS

Atomic norm regularization

• Sparse model decomposition: $G_0(q) = \sum_{k \in K} c_k A_k(q)$

Ak(*q*): set of model features / *'atoms'* $c_k \in \mathbb{C}$: *sparse* coefficients to be identified

• Assuming low-order stable systems, select first-order stable 'atoms'

$$
A_k(q) = \frac{1 - |k|^2}{q - k}, \quad K = \left\{ k = \alpha \cdot e^{j\beta} \mid \alpha \in [0, 1), \beta \in [0, 2\pi) \right\}
$$

- ... pole location estimated *simultaneously*: $S = \{k \mid |c_k| > 0\}$
- **Approach:** *l*1-norm regularization

Current gaps

- Infinitely many pole locations (*K* is an infinite set) \rightarrow discretization leads to error
- \bullet l_1 -norm regularization is prone to large bias \rightarrow hard to obtain good bias-variance trade-off
- Variable 'screening' rather than variable selection \rightarrow lots of false positives in pole location estimation

Current gaps

- Infinitely many pole locations (*K* is an infinite set) \rightarrow discretization leads to error
- *l*₁-norm regularization is prone to large bias \rightarrow hard to obtain good bias-variance trade-off
- Variable 'screening' rather than variable selection \rightarrow lots of false positives in pole location estimation

This work

- **Infinite-dimensional algorithm**
- **Adaptive reweighting**

• **Stability selection**

Atomic norm regularization in linear SysID

Problem: Identify discrete-time linear system $y(t) = G_0(q)u(t) + v(t)$ & its pole locations from i/o data sequence

$$
\mathbf{u} = [u(1) u(2) \dots u(N)]^{\top}, \mathbf{y} = [y(1) y(2) \dots y(N)]^{\top}
$$

Approach: Consider the first-order stable atomic decomposition, coe's *c^k* is identified by solving complex-valued lasso problem

$$
\underset{\{c_k\}_{k\in K}}{\text{minimize}} \quad \left\|\mathbf{y} - \sum_{k\in K} c_k \, \phi_k \right\|_2^2 + \lambda \sum_{k\in K} |c_k|
$$

 ϕ_k : response of $A_k(q)$ under input **u** $\sum_{k \in K} |c_k|$: *atomic norm* of identified model w.r.t. atoms $A_k(q)$

Real-valued formulation

- For real-valued systems, poles are in conjugate pairs
- ... only need to consider the upper half of the unit disk

$$
\hat{K} = \left\{ k = \alpha \cdot e^{j\beta} \, | \, \alpha \in [0,1), \beta \in [0,\pi] \right\}
$$

• **Equivalent real-valued problem:**

$$
\underset{\{\gamma_k\}_{k \in \hat{K}}}{\text{minimize}} \left\| \mathbf{y} - \sum_{k \in \hat{K}} \zeta_k \gamma_k \right\|_2^2 + 2\lambda \sum_{k \in \hat{K}} \|\gamma_k\|_2 \tag{\star}
$$
\n
$$
\gamma_k = \begin{bmatrix} \Re(c_k) & \Im(c_k) \end{bmatrix}^\top, \quad \zeta_k = \begin{bmatrix} 2\Re(\phi_k) & -2\Im(\phi_k) \end{bmatrix}
$$

∼ a standard group lasso problem

ETHzürich Automatic Control Laboratory **Dec. 6, 2022** 6/15

Solution: identified TF:

$$
\hat{G}(q) = \sum_{k \in \hat{K}} \begin{bmatrix} 1 & j \end{bmatrix} \gamma_k^{\star} A_k(q) + \begin{bmatrix} 1 & -j \end{bmatrix} \gamma_k^{\star} A_{\bar{k}}(q)
$$

estimated pole locations

$$
\hat{S}=\left\{k~|~{\parallel}\gamma_k^\star{\parallel}_2>0\right\}\cup\left\{\bar{k}~|~{\parallel}\gamma_k^\star{\parallel}_2>0\right\}
$$

But how to solve this infinite-dimensional problem?

- $\bullet \,\,$ Finite-dimensional approximation (error $\propto 1/\sqrt{n(\hat{K}_d)}$)
- Feature generation algorithm (*this work*)

Observation from the optimality conditions

• The optimality conditions of (*[⋆](#page-7-0)*) are

$$
\begin{cases} \left\|\zeta_k^\top R\right\|_2\leq \lambda, & \text{if } \left\|\gamma_k^\star\right\|_2=0\\ \zeta_k^\top R+\lambda \gamma_k^\star / \left\|\gamma_k^\star\right\|_2=0, & \text{if } \left\|\gamma_k^\star\right\|_2>0 \end{cases}, \quad \overbrace{R=\mathbf{y}-\sum_{k\in \hat{K}}\zeta_k\gamma_k^\star}^{\text{output residuals}}
$$

 \bullet For a finite-dimensional solution w.r.t. $\hat{K}_d = \{k_1, k_2, \ldots, k_p\}$, if a new atom is added $\hat{K}_d^+ := \hat{K}_d \cup \{k_{p+1}\},$ the trivial solution

$$
\gamma_i^{\star}(\hat{K}_d^+) = \begin{cases} \gamma_i^{\star}(\hat{K}_d), & i = 1, \dots, p, \\ \mathbf{0}, & i = p+1, \end{cases}
$$

 $\textsf{holds} \text{ iff } \left\| \zeta_{k_{p+1}}^{\top} R(\hat{K}_d) \right\|_2 \leq \lambda.$

ETHzürich Automatic Control Laboratory **Dec. 6, 2022** 8/15

The infinite-dimensional algorithm

- k_{p+1} is only a meaningful atom when $\left\|\zeta_{k_{p+1}}^{\top}R(\hat{K}_{d})\right\|_{2} > \lambda$
- **Greedy algorithm:** Add new atom k_{p+1} that maximizes $\left\| \zeta_{k_{p+1}}^{\top} R(\hat{K}_{d}) \right\|_{2}$

The infinite-dimensional algorithm

- k_{p+1} is only a meaningful atom when $\left\|\zeta_{k_{p+1}}^{\top}R(\hat{K}_{d})\right\|_{2} > \lambda$
- **Greedy algorithm:** Add new atom k_{p+1} that maximizes $\left\| \zeta_{k_{p+1}}^{\top} R(\hat{K}_{d}) \right\|_{2}$

Input: $(\mathbf{u}, \mathbf{v}), \epsilon > 0, l_{\text{max}}$ Initialize \hat{K}_d^0 and solve (\star) for $\gamma^{\star}(\hat{K}_d^0)$ **for** $l = 1, \ldots, l_{\text{max}}$ **do** $k^+ \leftarrow \operatorname*{argmax}_{k \in \hat{K}} \; \left\| \zeta_k^\top R(\hat{K}_d^{l-1}) \right\|_2 \left(\triangle \right)$ *k*∈*K*ˆ **if** $\left\| \zeta_{k+}^{\top} R(\hat{K}_{d}^{l-1}) \right\|_{2} \geq \lambda + \epsilon$ then $\hat{K}_d^l \leftarrow \hat{K}_d^{l-1} \cup \{k^+\}$ Solve (\star) for $\gamma^{\star}(\hat{K}_{d}^{l})$ **else** Break **end if end for Output:** \hat{K}_{d}^{l} , $\gamma^{\star}(\hat{K}_{d}^{l})$

The infinite-dimensional algorithm

- k_{p+1} is only a meaningful atom when $\left\|\zeta_{k_{p+1}}^{\top}R(\hat{K}_{d})\right\|_{2} > \lambda$
- **Greedy algorithm:** Add new atom k_{p+1} that maximizes $\left\| \zeta_{k_{p+1}}^{\top} R(\hat{K}_{d}) \right\|_{2}$

Proposition:

- Optimality conditions satisfied with *ϵ*-tolerance
- Objective decreases every iteration even if (\triangle) not solved exactly

Input: $(\mathbf{u}, \mathbf{v}), \epsilon > 0, l_{\text{max}}$ Initialize \hat{K}_d^0 and solve (\star) for $\gamma^{\star}(\hat{K}_d^0)$ **for** $l = 1, \ldots, l_{\text{max}}$ **do** $k^+ \leftarrow \operatorname*{argmax}_{k \in \hat{K}} \; \left\| \zeta_k^\top R(\hat{K}_d^{l-1}) \right\|_2 \left(\triangle \right)$ *k*∈*K*ˆ **if** $\left\| \zeta_{k+}^{\top} R(\hat{K}_{d}^{l-1}) \right\|_{2} \geq \lambda + \epsilon$ then $\hat{K}_d^l \leftarrow \hat{K}_d^{l-1} \cup \{k^+\}$ Solve (\star) for $\gamma^{\star}(\hat{K}_{d}^{l})$ **else** Break **end if end for Output:** \hat{K}_{d}^{l} , $\gamma^{\star}(\hat{K}_{d}^{l})$

- *Atom*: discretized solution with 50 poles
- *Atom2*: discretized solution with 500 poles
	- *InfA*: inf-dim solution starting from 50 poles

Yellow: 20 dB SNR Cyan: 40 dB SNR

- *Atom*: discretized solution with 50 poles
- *Atom2*: discretized solution with 500 poles
	- *InfA*: inf-dim solution starting from 50 poles

- *ARX*: ARX model with known order
- *TCK*: Kernel-based id with TC kernel
- *InfA*: inf-dim solution starting from 50 poles

Yellow: 20 dB SNR Cyan: 40 dB SNR

After solving the inf-dim group lasso...

- Ideally we want to regularize the number of poles
- Convex relaxation: P *^k*∈*^K* |*ck*| → more penalty for large coefficients → large bias
- Iterative reweighting to regularize less for large coe's: **adaptive group lasso**

$$
\text{minimize } \left\| \mathbf{y} - \sum_{k \in \hat{K}_d^l} \zeta_k \gamma_k \right\|_2^2 + 2\lambda \sum_{k \in \hat{K}_d^l} \frac{\|\gamma_k\|_2}{\left\|\gamma_k^{\star,-}\right\|_2 + \epsilon'},\tag{1}
$$

γ ⋆,− $\mathbf{k}^{\star,-}$: optimal solution from previous iteration

- *TCK*: Kernel-based id with TC kernel
- *InfA*: inf-dim solution starting from 50 poles
- *AdpInfA*: adaptive reweighting with 2 iterations

Yellow: 20 dB SNR Cyan: 40 dB SNR

AdpInfA: adaptive reweighting with 2 iterations

Back to pole location estimation

• *AdpInfA* looking good for model fitting, however...

- Lots of false positives!
- Lasso only guarantees non-active atoms being rejected with high probability
- **Variable screening** instead of **variable selection** ('p-value lottery')

Stability selection

- Subsampling to increase 'stability' of solution
- **Complementary pairs stability selection** (CPSS)¹

$$
\text{Input: } (\mathbf{u}, \mathbf{y}), \tau \in (0.5, 1], n_s
$$

for $i = 1, \ldots, n_s$ **do**

Generate complementary pairs of random subsamples

 $B_i \subset \{1, 2, \ldots, N\}, \ \bar{B}_i \leftarrow \{1, 2, \ldots, N\} \setminus B_i$

Find active set of poles $\hat{S}_{B_i},\,\hat{S}_{\bar{B}_i}$ by applying *AdpInfA* on subsamples **end for** $\hat{S} \leftarrow \left\{ k \mid \right\}$ $\frac{1}{2n_s}\sum_{i=1}^{n_s}\Big(\mathbb{1}_{\hat{S}_{B_i}}\!\!\left(k\right)+\mathbb{1}_{\hat{S}_{\bar{B}_i}}\!\!\left(k\right)\Big)\geq \tau\Big\},$ 1: indicator function. **Output:** *S*ˆ

• Control false positives when *τ >* 0*.*5

¹Shah R.D., Samworth R.J. (2013). Variable selection with error control: another look at stability selection. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 75(1), 55–80. **ETH**zürich Automatic Control Laboratory Dec. 6, 2022 14/15

SS: CPSS with $n_s = 50$ subsamples, $\tau = 0.9$

4th-order system, data length *N* = 100, 20 dB SNR, 100 simulations, fixed *λ* choice

An infinite-dimensional atomic norm regularization algorithm

- Avoid discretization error by using a greedy algorithm to generate new candidate poles
- Better model fit by debiasing estimates with adaptive reweighting
- Accurate pole location estimation with stability selection
- To improve: computation complexity

