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From parameter estimation to function learning

Parameter estimation (classical statistics, n≪ N )
• Prediction error method (maximum likelihood estimation)
• Main issue: model structure / order selection

Smoothness-promoting learning (non-parametric statistics, n ≈ N )
• Kernel-based identification (RKHS, Gaussian process)
• Main issue: interpretability of complexity measure

Sparsity-promoting learning (high-dimensional statistics, n≫ N )
• Variable selection, lasso, compressive sensing
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Motivation: pole location estimation

• Key in system threoretic analysis & classical control design
• ... yet often neglected in linear system identification
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4th-order discrete-time system
20 dB SNR, data length N = 100
ARX model with known order
100 Monte Carlo simulations

• Harder for kernel-based id: complexity controlled by induced norm of RKHS
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Atomic norm regularization

• Sparse model decomposition: G0(q) =
∑

k∈K ckAk(q)
Ak(q): set of model features / ‘atoms’

ck ∈ C: sparse coefficients to be identified

• Assuming low-order stable systems, select first-order stable ‘atoms’

Ak(q) = 1− |k|2

q − k
, K =

{
k = α · ejβ |α ∈ [0, 1), β ∈ [0, 2π)

}
• ... pole location estimated simultaneously: S = {k | |ck| > 0}

• Approach: l1-norm regularization

Automatic Control Laboratory Dec. 6, 2022 3/15



Current gaps

• Infinitely many pole locations (K is an infinite set)
→ discretization leads to error

• l1-norm regularization is prone to large bias
→ hard to obtain good bias-variance trade-off

• Variable ‘screening’ rather than variable selection
→ lots of false positives in pole location estimation

This work

• Infinite-dimensional
algorithm

• Adaptive reweighting

• Stability selection
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Atomic norm regularization in linear SysID

Problem: Identify discrete-time linear system y(t) = G0(q)u(t) + v(t) & its pole
locations from i/o data sequence

u = [u(1) u(2) . . . u(N)]⊤, y = [y(1) y(2) . . . y(N)]⊤

Approach: Consider the first-order stable atomic decomposition, coe’s ck is
identified by solving complex-valued lasso problem

minimize
{ck}k∈K

∥∥∥∥∥∥ y−
∑
k∈K

ck ϕk

∥∥∥∥∥∥
2

2

+ λ
∑
k∈K

|ck|

ϕk: response of Ak(q) under input u∑
k∈K |ck|: atomic norm of identified model w.r.t. atoms Ak(q)
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Real-valued formulation

• For real-valued systems, poles are in conjugate pairs
• ... only need to consider the upper half of the unit disk

K̂ =
{

k = α · ejβ |α ∈ [0, 1), β ∈ [0, π]
}

• Equivalent real-valued problem:

minimize
{γk}k∈K̂

∥∥∥∥∥∥ y−
∑
k∈K̂

ζkγk

∥∥∥∥∥∥
2

2

+ 2λ
∑
k∈K̂

∥γk∥2 (⋆)

γk =
[
ℜ(ck) ℑ(ck)

]⊤
, ζk =

[
2ℜ(ϕk) − 2ℑ(ϕk)

]
∼ a standard group lasso problem

Automatic Control Laboratory Dec. 6, 2022 6/15



Solution: identified TF:

Ĝ(q) =
∑
k∈K̂

[ 1 j ] γ⋆
kAk(q) + [ 1 − j ] γ⋆

kAk̄(q)

estimated pole locations

Ŝ = {k | ∥γ⋆
k∥2 > 0} ∪

{
k̄ | ∥γ⋆

k∥2 > 0
}

But how to solve this infinite-dimensional problem?
• Finite-dimensional approximation (error ∝ 1

/√
n(K̂d) )

• Feature generation algorithm (this work)
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Observation from the optimality conditions

• The optimality conditions of (⋆) are


∥∥∥ζ⊤

k R
∥∥∥

2
≤ λ, if ∥γ⋆

k∥2 = 0
ζ⊤

k R + λγ⋆
k/ ∥γ⋆

k∥2 = 0, if ∥γ⋆
k∥2 > 0

,

output residuals︷ ︸︸ ︷
R = y−

∑
k∈K̂

ζkγ⋆
k

• For a finite-dimensional solution w.r.t. K̂d = {k1, k2, . . . , kp}, if a new atom is
added K̂+

d := K̂d ∪ {kp+1}, the trivial solution

γ⋆
i (K̂+

d ) =
{

γ⋆
i (K̂d), i = 1, . . . , p,

0, i = p + 1,

holds iff
∥∥∥ζ⊤

kp+1
R(K̂d)

∥∥∥
2
≤ λ.
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The infinite-dimensional algorithm

• kp+1 is only a meaningful atom when∥∥∥ζ⊤
kp+1

R(K̂d)
∥∥∥

2
> λ

• Greedy algorithm: Add new atom
kp+1 that maximizes

∥∥∥ζ⊤
kp+1

R(K̂d)
∥∥∥

2

Proposition:
• Optimality conditions satisfied with

ϵ-tolerance
• Objective decreases every iteration

even if (△) not solved exactly

Input: (u, y), ϵ > 0, lmax
Initialize K̂0

d and solve (⋆) for γ⋆(K̂0
d)

for l = 1, . . . , lmax do
k+ ← argmax

k∈K̂

∥∥∥ζ⊤
k R(K̂l−1

d )
∥∥∥

2
(△)

if
∥∥∥ζ⊤

k+R(K̂l−1
d )

∥∥∥
2
≥ λ + ϵ then

K̂l
d ← K̂l−1

d ∪ {k+}
Solve (⋆) for γ⋆(K̂l

d)
else

Break
end if

end for
Output: K̂l

d, γ⋆(K̂l
d)
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Numerical example

Atom: discretized solution
with 50 poles

Atom2: discretized solution
with 500 poles

InfA: inf-dim solution
starting from 50 poles

Yellow: 20 dB SNR
Cyan: 40 dB SNR

4th-order system, data length N = 100, 100 simulations, λ selected by cross-validation
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Numerical example

ARX : ARX model with
known order

TCK : Kernel-based id with
TC kernel

InfA: inf-dim solution
starting from 50 poles

Yellow: 20 dB SNR
Cyan: 40 dB SNR

4th-order system, data length N = 100, 100 simulations, λ selected by cross-validation
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After solving the inf-dim group lasso...

• Ideally we want to regularize the number of poles
• Convex relaxation: ∑

k∈K |ck| → more penalty for large coefficients→ large
bias

• Iterative reweighting to regularize less for large coe’s: adaptive group lasso

minimize
γ

∥∥∥∥∥∥∥ y−
∑

k∈K̂l
d

ζkγk

∥∥∥∥∥∥∥
2

2

+ 2λ
∑

k∈K̂l
d

∥γk∥2∥∥∥γ⋆,−
k

∥∥∥
2

+ ϵ′
(1)

γ⋆,−
k : optimal solution from previous iteration
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Numerical example

TCK : Kernel-based id with
TC kernel

InfA: inf-dim solution
starting from 50 poles

AdpInfA: adaptive reweighting
with 2 iterations

Yellow: 20 dB SNR
Cyan: 40 dB SNR

4th-order system, data length N = 100, 100 simulations, λ selected by cross-validation
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Numerical example

InfA: inf-dim solution
starting from 50 poles

AdpInfA: adaptive reweighting
with 2 iterations

InfA AdpInfA
20 dB SNR

Bias2 [×10−2] 2.63 0.91
Var [×10−2] 3.80 2.70

MSE [×10−2] 6.44 3.60
40 dB SNR

Bias2 [×10−2] 0.43 0.07
Var [×10−2] 0.76 0.52

MSE [×10−2] 1.18 0.59

4th-order system, data length N = 100, 100 simulations, λ selected by cross-validation
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Back to pole location estimation

• AdpInfA looking good for model fitting, however...
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• Lots of false positives!
• Lasso only guarantees non-active atoms being rejected with high probability
• Variable screening instead of variable selection (‘p-value lottery’)
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Stability selection

• Subsampling to increase ‘stability’ of solution
• Complementary pairs stability selection (CPSS)1

Input: (u, y), τ ∈ (0.5, 1], ns

for i = 1, . . . , ns do
Generate complementary pairs of random subsamples

Bi ⊂ {1, 2, . . . , N} , B̄i ← {1, 2, . . . , N} \Bi

Find active set of poles ŜBi
, ŜB̄i

by applying AdpInfA on subsamples
end for
Ŝ ←

{
k

∣∣∣ 1
2ns

∑ns

i=1

(
1ŜBi

(k) + 1ŜB̄i

(k)
)
≥ τ

}
, 1: indicator function.

Output: Ŝ

• Control false positives when τ > 0.5
1Shah R.D., Samworth R.J. (2013). Variable selection with error control: another look at stability

selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55–80.
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Numerical example

SS: CPSS with ns = 50 subsamples, τ = 0.9
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4th-order system, data length N = 100, 20 dB SNR, 100 simulations, fixed λ choice

Automatic Control Laboratory Dec. 6, 2022 15/15



An infinite-dimensional atomic norm regularization algorithm

• Avoid discretization error by using a greedy algorithm to generate new
candidate poles
• Better model fit by debiasing estimates with adaptive reweighting
• Accurate pole location estimation with stability selection

• To improve: computation complexity
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