

Automatic Control Laboratory

Subspace Identification of Linear Time-Periodic Systems with Periodic Inputs <u>Mingzhou Yin</u>, Dr. Andrea Iannelli, Prof. Roy S. Smith Dec. 17, 2020, CDC 2020

Periodic systems, but why?

- Linear time-periodic (LTP) systems: systems with periodically varying linear dynamics
- · Periodicity comes naturally in practical systems
 - Rotating dynamics (Allen, Sracic, et al. 2011)
 - Periodic scheduling parameters (Felici, Wingerden, and Verhaegen 2007)
 - Periodic operating trajectory (Allen and Sracic 2009)
- Linear time-periodic (LTP) systems as an intermediate step for
 - LTV systems
 - LPV systems
 - nonlinear systems along limit cycles

The problem

LTP identification problem

Consider a discrete-time stable LTP system with minimal state-space model

$$\begin{cases} x(t+1) &= A_t x(t) + B_t u(t) \\ y(t) &= C_t x(t) \end{cases}, A_t = A_{t+P}, B_t = B_{t+P}, C_t = C_{t+P}, \tag{1}$$

P is the known period.

Problem: Estimate a state-space model equivalent to (1) from input-output measurements with output noise.

An gap of frequency domain methods

- The prevailing method: time-domain subspace identification
 - (Verhaegen and Yu 1995), (Hench 1995)
- However, study of frequency domain methods is limited...
- ...why needed? To make use of periodic data, for
 - avoiding initial state estimation
 - easier time-domain averaging
- ...why difficult? Frequency domain behavior is different from LTI systems

Frequency response of LTP systems

- Response at each frequency ω is not independent
- An input at ω will generate response at $\omega + 2k\pi/P, \ k \in \mathbb{Z}$
- Complex gain $G(\omega)$ becomes a function $G_{\omega}(\omega + 2k\pi/P)$ of k.
- Two paths to address this problem:
 - Identify $G_{\omega}(\omega + 2k\pi/P)$ directly at each frequency \rightarrow frequency lifting
 - (Uyanik et al. 2019)
 - Very restrictive in input design to avoid overlap of frequency response contents
 - In this work, make use of LTI reformulation

On the shoulders of LTI systems

• LTP systems as structured LTI systems

Time-lifting

Concatenate inputs and outputs of one period

$$\begin{split} \tilde{u}(k) &= \begin{bmatrix} u^{\mathsf{T}}(kP) & u^{\mathsf{T}}(kP+1) & \cdots & u^{\mathsf{T}}(kP+P-1) \end{bmatrix}^{\mathsf{T}}, \\ \tilde{y}(k) &= \begin{bmatrix} y^{\mathsf{T}}(kP) & y^{\mathsf{T}}(kP+1) & \cdots & y^{\mathsf{T}}(kP+P-1) \end{bmatrix}^{\mathsf{T}}. \end{split}$$

Then the dynamics $\tilde{y}(k) = \tilde{G}(e^{j\omega})\tilde{u}(k)$ is LTI with the (l,m)-th block element:

$$\tilde{G}_{l,m}(\mathbf{e}^{j\omega}) = \sum_{s=0}^{\infty} g_{sP+l-m}^{l} \exp\left(-j\omega s\right),$$

where $g_r^t = C_t A_{t-1} A_{t-2} \cdots A_{t-r+1} B_{t-r}$ is the periodic impulse response.

ETH zürich Automatic Control Laboratory

Dec. 17, 2020 5/14

A two-step approach

- 1) Lift the LTP system and estimate $\tilde{G}(e^{j\omega})$ of the lifted system
 - Not a trivial problem as it is MIMO and cannot be excited separately
- 2) Identify the LTP system from the $\tilde{G}(\mathbf{e}^{j\omega})$ estimate
 - Extension of frequency-domain subspace methods for LTI systems

Assumptions:

- J input-output sequences of length NP with periodic inputs, $J \ge Pn_u$
- · Zero mean i.i.d noise across experiments, uncorrelated with inputs
- Fast-decaying covariances inside each experiment $\sum_{\tau=1}^{\infty} |\tau \cdot \mathbb{E} [w(t)w(t-\tau)]| = c < \infty$

Generalized empirical transfer function estimate

$$\hat{\tilde{G}}(\mathbf{e}^{j\omega_k}) = \tilde{Y}(\mathbf{e}^{j\omega_k})\tilde{U}^{\dagger}(\mathbf{e}^{j\omega_k}),$$

- Columns of $\tilde{Y}(e^{j\omega_k})$ and $\tilde{U}(e^{j\omega_k})$ are DFT of each input-output sequence
- Multiple periodic trajectories are needed to satisfy the PE requirement

Properties of the generalized ETFE

•
$$\mathbb{E}\left[\hat{\tilde{G}}(\mathbf{e}^{j\omega_k})\right] = \tilde{G}(\mathbf{e}^{j\omega_k}),$$

- $\operatorname{Cov}\left[\hat{\tilde{G}}\right] = \left(\Phi_w + \rho(N)\right) \left(\tilde{U}^{\dagger}\right)^{\mathsf{H}} \tilde{U}^{\dagger}, \Phi_w$: noise spectrum, $|\rho(N)| \leq 2c/N$.
- Estimates at different frequencies are independent.

Time-aliased periodic impulse response

- $w_{l,m}(n)$: the IDFT of generalized ETFE $\hat{\hat{G}}_{l,m}(e^{j\omega_k})$.
- According to the definition of $\tilde{G}_{l,m}(e^{j\omega_k})$,

$$w_{l,m}(n) = \begin{cases} h_{nP+l-m}^{l}, & nP+l-m > 0, \\ h_{(N+n)P+l-m}^{l}, & nP+l-m \le 0, \end{cases}$$

where $h_r^t = \sum_{i=0}^{\infty} g_{r+iNP}^t$, $r = 1, 2, \cdots, NP$: time-aliased periodic impulse response.

Extension of the LTI result:

• IDFT of frequency response = time-aliased impulse response

Order-revealing decomposition for LTP systems

$$H_{p}^{\tau} = \begin{bmatrix} h_{1}^{\tau} & h_{2}^{\tau} & \cdots & h_{r}^{\tau} \\ h_{2}^{\tau+1} & h_{3}^{\tau+1} & \cdots & h_{r+1}^{\tau+1} \\ \vdots & \vdots & \ddots & \vdots \\ h_{q}^{\tau+P-1} & h_{q+1}^{\tau+P-1} & \cdots & h_{q+r-1}^{\tau+P-1} \end{bmatrix} = \mathcal{O}_{q}^{\tau} \left(I - \Psi_{A,\tau}^{N} \right)^{-1} \mathcal{C}_{r}^{\tau},$$

where

$$\Psi_{A,t} = A_{t-1}A_{t-2}\cdots A_{t-P},$$

$$\mathcal{C}_s^{\tau} = \begin{bmatrix} B_{\tau-1} & A_{\tau-1}B_{\tau-2} & \cdots & A_{\tau-1}\cdots A_{\tau-s+1}B_{\tau-s} \end{bmatrix},$$

$$\mathcal{O}_s^{\tau} = \operatorname{col}\left(C_{\tau}, C_{\tau+1}A_{\tau}, \cdots, C_{\tau+s-1}A_{\tau+s-2}\cdots A_{\tau}\right).$$
Property: rank $\begin{pmatrix} H^{\tau} \end{pmatrix} = \pi$, range $\begin{pmatrix} H^{\tau} \end{pmatrix} = \operatorname{range}\left(\mathcal{O}^{\tau}\right)$

• Key property: rank $(H_p^{\tau}) = n_x$, range $(H_p^{\tau}) =$ range (\mathcal{O}_s^{τ})

The proposed algorithm

Frequency-domain subspace identification of LTP systems

- 1) Lift the input-output data.
- 2) Estimate $\tilde{G}(e^{j\omega_k})$ of the lifted system by generalized ETFE.
- 3) Apply IDFT on $\hat{G}(e^{j\omega_k})$ and find \hat{h}_r^t by rearranging elements.
- 4) Construct H_p^{τ} from \hat{h}_r^t .
- 5) Find an n_x -th order approximation of range (H_p^{τ}) as the estimate of \mathcal{O}_s^{τ} .
- 6) Estimate A_{τ} , C_{τ} from \hat{O}_s^{τ} .
- 7) Estimate B_{τ} by fitting \hat{h}_{r}^{t} .

Consistency property

Theorem

Let \hat{A}_t , \hat{B}_t , and \hat{C}_t be the estimated state matrices by the proposed algorithm. Given the stated assumptions, there exist nonsingular periodic matrices $T_t \in \mathbb{R}^{n_x \times n_x}$, $T_t = T_{t+P}$ such that w.p. 1,

$$\lim_{N \to \infty} \left\| \begin{bmatrix} A_t & B_t \\ C_t & \mathbf{0} \end{bmatrix} - \begin{bmatrix} T_{t+1} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} \hat{A}_t & \hat{B}_t \\ \hat{C}_t & \mathbf{0} \end{bmatrix} \begin{bmatrix} T_t^{-1} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix} \right\|_F = 0.$$

for a fixed choice of q, r.

Numerical example

- Compare with existing time-domain subspace algorithms:
 - MOESP algorithm in (Verhaegen and Yu 1995)
 - intersection algorithm in (Hench 1995)
 - CCA algorithm in (Cox 2018)
- Periodic input of i.i.d. unit Gaussian entries
- i.i.d. unit Gaussian noise
- N = 50, $J = 10 \cdot P$, n_x is known

Example 1

Figure: Accuracy of state-space model estimation in terms of impulse response.

Consistency of the estimate

Figure: The estimate is consistent with a convergence rate of 1/N.

A novel subspace identification method for LTP system

- Generalized ETFE for lifted LTP system
- Order revealing decomposition of lifted LTP system

