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Low-rank matrix regression

® Universal problem for extracting low-order structure from data
e Estimate an unknown low-rank matrix X € R™*"™ from a noisy measurement Y’
® Basic problem: Y = X + E, rank (X) = r, r < min(m,n)

® [dea: find the best rank-r fit:
X = argmin ||Y—XH§, st. rank (X)=r
XeRmxn
e Closed-form solution: (truncated SVD) X = Sy ouv]
[ ]

Virtually anything beyond that is NP-hard

® linear instead of direct measurement: Y = ®X + E, & € RP*™
® X isstructured: X € M™*"™ #£ R™*"
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Motivating examples i
X = argmin ||Y — <I>X||?7 s.t. rank (X)=r
XeMmX’n
® Low-rank network modeling: g1 = BTz, + ey, transition matrix B is low rank
T T
X=B, Y=z ...2p11] , ®=[z1 ... 2]
® System realization: impulse response model of LTl systems G(q) = Yo, giq™"
g1 92 9n
92 93 In+1

X = , M : Hankel matrices

9m  9m+1  ° Gmtn-1
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An approximate solution

® Replace rank function with tightest convex surrogate: nuclear norm regularization

Xiue = argmin
XeMmxn

1 2
S IV = @[3+ A X,

e Problems: 1) SDP problems scale unfavorably with the problem size
2) Rank of Xnuc requires tuning A by trial and error
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A different but related problem: sparse learning

e Consider linear regression model
Neo
Y=Y oX;+E
i=1

e Estimate a sparse o with  nonzero elements (card(o) = r) from Y and (XZ):L;

® |dea: Find the best cardinality-r fit:
& =argmin ||V — Z;Zloi)?i”z s.t. card(o) =,
o€R"e

® NP hard — replace cardinality function with tightest convex surrogate: /;-norm regularization

o1, (\) = argmin ||V — 07,052 + Ao,
c€eR"e

® Problem: cardinality of &;, requires tuning A by trial and error
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Least angle regression (LAR)

An iterative algorithm that obtains & for all choices of r
Assume: Y, X; € RP: vector-valued, X;: normalized with ||X1H2 =1

Find the most output-correlated covariate:

i1 = argmax, | X, Y|

l

Take direction (1 = )Z'il with a step size of m1 until there exists X,

i5 that correlates with model residual as much as X, :

N

(i2,m) = argmin |n|
,m

st X (Y = nXi)| = (KL - X, k= BITI =T . >

w

. Take bisecting direction:
¢ = argmin, [|C]l, s.t. X[ ¢ = X ¢ =1,

until X5, comes in with the same residual correlation

LAR solution Y (1) = >i_, mi€; corresponds to the smallest A s.t. 6, (\) has cardinality r
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Contributions

. convex [,-norm efficient Least angle
Sparse learnin L : .
P 9 “surrogate regularization algorithm regression
T generalizes T generalizes

Low-rank matrix convex Nuclear norm _  efficient
regression surrogate regularization ~  algorithm

® This work: by considering low-rank matrix regression as an infinite-dimensional sparse learning problem,
develop the LAR algorithm for low-rank matrix regression of unstructured and Hankel matrices
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Low-rank matrix regression as sparse rank-1 matrix decomposition
® |dea: rank-r matrix regression = finding a decomposition of r independent rank-1 matrices

X = argmin ||V — <I>X||% . T
XeMmxn X = Z&ixi
i=1

st rank (X)=r
(%i.00) = argmin Y - @ X1 i Xill7

Xi,0i -

s.t. Xi=wv,,i=1,...,rn
rank ([u; -+ u,]) =r,
rank ([vy -+ v,]) =,

S o X; € Mmxn

® Suppose for all X € M™*" rank (X) = r, there exists a decomposition X = >""_, ¢, X;, where

X; € M™*" satisfies the blue constraints
® RHS can be viewed as a sparse learning problem with an infinite set of rank-1 basis X; = ®X;

& =argmin ||V — Zioif(in s.t. card(o) =7
(o)

® Least angle regression can be applied using a suitable decomposition of X

v Institute of Automatic Control
(f Leibniz University Hannover

8/14

M. Yin, M. A. Miiller | December 10, 2025 | Low-rank matrix regression via least-angle regression



{7 1] Leibniz
LAR for unstructured matrix

® Consider the set of orthonormal rank-1 matrices
X = {uiv;r| [will, = vill, =L ujue =v/vp =0,k =1,...,i—1}

e Normalize ® by taking SVD: & = U@S@qu, Up € RP*™ Sg, Ve € RM*™,
® (Closed-form solution exists by considering an orthonormal basis of S¢V,;Xi

X =argmin ||Y — ®X|> R o
XERmxn = X =VoSg! Zﬁ?X?
s.t. rank (X)=r i=1
(Xeo0) = argmin Y - Us X7, o2 X2
Xop ()

s.t. XreX,i=1,...,r
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LAR for unstructured matrix: results oolt

Theorem: Closed-form LAR solution for unstructured matrix

Let UL Y = U%S(VY)T be the SVD of UJ Y, where U = @1 - -+ 1@,,] € R™X™, S € R™X™ with the
(i,1)-th element being o;, and V* = [¥1 - -+ ¥, ] € R™*™,

The LAR solution to the sparse learning problem (x) is given by X;‘ =V
The low-rank estimate is given by Xpar = VoSg' >, (0 =00 ) a;v
Corollary: Equivalence to nuclear norm regularization

The closed-form solution is equivalent to the normalized nuclear norm regularization problem:

% 1
Rea(V) = anganin 2 ¥ — 8XI2+ A 5oV X] .
€ mXn

where A = miny A s.t. rank (Zuen(3) =,
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Numerical results: low-rank network modeling

3 ==

L2

Tht1 = BT.’Ek + e

® 120 Monte Carlo simulations g
[
* m=n=40, p=80, r=10 g — 1
® Random rank-r B with spectral radius of 0.95 g é—l- €
® (aussian error with o = 0.01 5 1
® | AR: proposed closed-form solution
0

e Nuclear: nuclear norm regularization (20-point A-grid in [0.01, 0.1])

. ) . PS* @‘b‘ qO
LS-TSVD: successive least-squares estimation and truncated SVD v $\‘°\ \)gﬁ%
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LAR for Hankel matrix

® Orthonormal decomposition no longer possible, rank-1 Hankel decomposition required
e All rank-1 (complex) Hankel matrices can be expressed as

X, = usz

z

T T
uZ:[lz...szl] ,vZ:[lz...znfl] ,z€C
® We restrict to Hankel matrices that can be decomposed as X = >7_, 0., X,

® For the system realization example, this corresponds to no repeated poles

X =argmin ||V — &X|?% o R
X eHmxn — X=>6.X.,
s.t. rank (X)=r i=1
(Xzi’a-zi> = argmin ”Y_(I)Z::1 UZin'iHi‘
Xii,agi
s.t. X.=wv],i=1,...,n
Zi 7é Zjs Vi 7é ]
® Areal-valued reformulation for complex X, is presented in the paper, but omitted here for clarity
® No closed-form solution, LAR iterations can be implemented ('fcfgjg'n“:t;ﬂﬁj{i;‘yﬂgﬂ;vfg"tm'
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Numerical results: system realization

2 T
® 120 Monte Carlo simulations i '
*m=80,n=20,r=6 5

: =150 1 +
® Sixth-order benchmark system c B + :

[
® Gaussian error with o = 0.1 g T
£ =R
® |AR: proposed LAR algorithm 0 El L
|

® [AR-LS: LAR algorithm followed by least-squares projection 05 J'_ L % i

® Nuclear: nuclear norm regularization (20-point A-grid in [0.1, 1])

® Cadzow, SLRA: other existing algorithms \»Y%QJ\)% Q\&* &04* \8_?*
JF &
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Low-rank matrix regression via least-angle regression

® Connect low-rank matrix regression with sparse learning
® (losed-form LAR solution for unstructured matrices

e Efficient LAR iterations for Hankel matrices
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