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Low-rank matrix regression

• Universal problem for extracting low-order structure from data
• Estimate an unknown low-rank matrix X ∈ Rm×n from a noisy measurement Y

• Basic problem: Y = X + E, rank (X) = r, r < min(m, n)
• Idea: find the best rank-r fit:

X̂ = arg min
X∈Rm×n

∥Y − X∥2
F s.t. rank (X) = r

• Closed-form solution: (truncated SVD) X̂ =
∑r

i=1 σiuiv⊤
i

• Virtually anything beyond that is NP-hard
• Linear instead of direct measurement: Y = ΦX + E , Φ ∈ Rp×m

• X is structured: X ∈ Mm×n ̸= Rm×n
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Motivating examples

X̂ = arg min
X∈Mm×n

∥Y − ΦX∥2
F s.t. rank (X) = r

• Low-rank network modeling: xk+1 = B⊤xk + ek , transition matrix B is low rank

X = B, Y = [x2 . . . xp+1]⊤ , Φ = [x1 . . . xp]⊤

• System realization: impulse response model of LTI systems G(q) =
∑∞

i=1 giq
−i

X =


g1 g2 · · · gn

g2 g3 · · · gn+1
...

...
. . .

...
gm gm+1 · · · gm+n−1

 , M : Hankel matrices
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An approximate solution

• Replace rank function with tightest convex surrogate: nuclear norm regularization

X̂nuc = arg min
X∈Mm×n

1
2 ∥Y − ΦX∥2

F + λ ∥X∥∗

• Problems: 1) SDP problems scale unfavorably with the problem size
2) Rank of X̂nuc requires tuning λ by trial and error
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A different but related problem: sparse learning

• Consider linear regression model

Y =
nσ∑
i=1

σiX̃i + E

• Estimate a sparse σ with r nonzero elements (card(σ) = r) from Y and
(
X̃i

)nσ

i=1
• Idea: Find the best cardinality-r fit:

σ̂ = arg min
σ∈Rnσ

∥∥Y −
∑nσ

i=1σiX̃i

∥∥2 s.t. card(σ) = r,

• NP hard → replace cardinality function with tightest convex surrogate: l1-norm regularization

σ̂l1(λ) = arg min
σ∈Rnσ

∥∥Y −
∑nσ

i=1σiX̃i

∥∥2
2 + λ ∥σ∥1

• Problem: cardinality of σ̂l1 requires tuning λ by trial and error
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Least angle regression (LAR)

• An iterative algorithm that obtains σ̂ for all choices of r

• Assume: Y, X̃i ∈ Rp: vector-valued, X̃i: normalized with
∥∥X̃i

∥∥
2 = 1

1: Find the most output-correlated covariate:

i1 = arg maxi |X̃⊤
i Y |

2: Take direction ζ1 = X̃i1 with a step size of η1 until there exists
i2 that correlates with model residual as much as X̃i1 :

(i2, η1) = arg min
i,η

|η|

s.t. |X̃⊤
i (Y − ηX̃i1 )| = |X̃⊤

i1 (Y − ηX̃i1 )|
3: Take bisecting direction:

ζ2 = arg minζ ∥ζ∥2 s.t. X̃⊤
i1 ζ = X̃⊤

i2 ζ = 1,

until X̃i3 comes in with the same residual correlation

~X 2

~X 3

~X1
μ1=Y

μ2

p = 2, nσ = 3

• LAR solution Ŷ (r) =
∑r

i=1 ηiζi corresponds to the smallest λ s.t. σ̂l1(λ) has cardinality r
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• This work: by considering low-rank matrix regression as an infinite-dimensional sparse learning problem,
develop the LAR algorithm for low-rank matrix regression of unstructured and Hankel matrices
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Low-rank matrix regression as sparse rank-1 matrix decomposition
• Idea: rank-r matrix regression = finding a decomposition of r independent rank-1 matrices

X̂ = arg min
X∈Mm×n

∥Y − ΦX∥2
F

s.t. rank (X) = r
⇐⇒ X̂ =

r∑
i=1

σ̂iX̂i(
X̂i, σ̂i

)
= arg min

Xi,σi

∥Y − Φ
∑r

i=1 σiXi∥
2
F

s.t. Xi = uiv⊤
i , i = 1, . . . , r,

rank ([u1 · · · ur]) = r,
rank ([v1 · · · vr]) = r,∑r

i=1 σiXi ∈ Mm×n

• Suppose for all X ∈ Mm×n, rank (X) = r, there exists a decomposition X =
∑r

i=1 σiXi, where
Xi ∈ Mm×n satisfies the blue constraints

• RHS can be viewed as a sparse learning problem with an infinite set of rank-1 basis X̃i = ΦXi

σ̂ = arg min
σ

∥∥Y −
∑

iσiX̃i

∥∥2 s.t. card(σ) = r

• Least angle regression can be applied using a suitable decomposition of X
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LAR for unstructured matrix

• Consider the set of orthonormal rank-1 matrices

Xi =
{

uiv⊤
i

∣∣ ∥ui∥2 = ∥vi∥2 = 1, u⊤
i uk = v⊤

i vk = 0, k = 1, . . . , i − 1
}

• Normalize Φ by taking SVD: Φ = UΦSΦV ⊤
Φ , UΦ ∈ Rp×m, SΦ, VΦ ∈ Rm×m.

• Closed-form solution exists by considering an orthonormal basis of SΦV ⊤
Φ Xi

X̂ = arg min
X∈Rm×n

∥Y − ΦX∥2
F

s.t. rank (X) = r
⇐⇒ X̂ = VΦS−1

Φ

r∑
i=1

σ̂u
i X̂u

i(
X̂u

i , σ̂u
i

)
= arg min

Xu
i

,σu
i

∥Y − UΦ
∑r

i=1 σu
i Xu

i ∥2
F

s.t. Xu
i ∈ Xi, i = 1, . . . , r

(⋆)
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LAR for unstructured matrix: results

Theorem: Closed-form LAR solution for unstructured matrix

Let U⊤
Φ Y = UuS(V u)⊤ be the SVD of U⊤

Φ Y , where Uu = [û1 · · · ûm] ∈ Rm×m, S ∈ Rm×n with the
(i, i)-th element being σi, and V u = [v̂1 · · · v̂n] ∈ Rn×n.

The LAR solution to the sparse learning problem (⋆) is given by X̂u
i = ûiv̂⊤

i , σ̂u
i = σi − σr+1.

The low-rank estimate is given by X̂LAR = VΦS−1
Φ

∑r
i=1

(
σ0

i − σ0
r+1

)
ûiv̂⊤

i .

Corollary: Equivalence to nuclear norm regularization

The closed-form solution is equivalent to the normalized nuclear norm regularization problem:

X̂nuc,n(λ) = arg min
X∈Rm×n

1
2 ∥Y − ΦX∥2

F + λ
∥∥SΦV ⊤

Φ X
∥∥

∗ ,

where λ = minλ λ s.t. rank
(

X̂nuc,n(λ)
)

= r.
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Numerical results: low-rank network modeling

xk+1 = B⊤xk + ek

• 120 Monte Carlo simulations
• m = n = 40, p = 80, r = 10
• Random rank-r B with spectral radius of 0.95
• Gaussian error with σ = 0.01

• LAR: proposed closed-form solution
• Nuclear: nuclear norm regularization (20-point λ-grid in [0.01, 0.1])
• LS-TSVD: successive least-squares estimation and truncated SVD LA
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LAR for Hankel matrix
• Orthonormal decomposition no longer possible, rank-1 Hankel decomposition required
• All rank-1 (complex) Hankel matrices can be expressed as

Xz = uzv⊤
z , uz =

[
1 z . . . zm−1]⊤

, vz =
[
1 z . . . zn−1]⊤

, z ∈ C

• We restrict to Hankel matrices that can be decomposed as X =
∑r

i=1 σziXzi

• For the system realization example, this corresponds to no repeated poles

X̂ = arg min
X∈Hm×n

∥Y − ΦX∥2
F

s.t. rank (X) = r
⇐⇒ X̂ =

r∑
i=1

σ̂ziX̂zi(
X̂zi , σ̂zi

)
= arg min

X
ψi
zi

,σ′
zi

∥Y − Φ
∑r

i=1 σziXzi∥
2
F

s.t. Xz = uzv⊤
z , i = 1, . . . , r,

zi ̸= zj , ∀ i ̸= j

• A real-valued reformulation for complex Xz is presented in the paper, but omitted here for clarity
• No closed-form solution, LAR iterations can be implemented
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Numerical results: system realization

• 120 Monte Carlo simulations
• m = 80, n = 20, r = 6
• Sixth-order benchmark system
• Gaussian error with σ = 0.1

• LAR: proposed LAR algorithm
• LAR-LS: LAR algorithm followed by least-squares projection
• Nuclear: nuclear norm regularization (20-point λ-grid in [0.1, 1])
• Cadzow, SLRA: other existing algorithms
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Low-rank matrix regression via least-angle regression

• Connect low-rank matrix regression with sparse learning
• Closed-form LAR solution for unstructured matrices
• Efficient LAR iterations for Hankel matrices

Mingzhou Yin
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