ETH zürich

Signal Matrix Model in Simulation, Signal Denoising and Control Design

Mingzhou Yin, Andrea Iannelli, Roy S. Smith Automatic Control Laboratory, Swiss Federal Institute of Technology

Signal matrix model (SMM)

Applications

- Challenges:
 - systems are increasingly complex
 - how to use big data
- **Solution:** compact parametric models \rightarrow • implicit non-parametric trajectory models
- Novelty: a statistically optimal approach to deal with noisy data
- Construct trajectory by combining **direct** • knowledge and signal matrix
- Signal matrix: Hankel matrix of trajectory data
- Noise-free case: Willems' fundamental lemma
- Noisy case: MAP estimation

$$\hat{\mathbf{z}} = \mathbf{z} + \mathbf{w}_{\mathbf{z}}$$
$$\mathbf{w}_{\mathbf{z}} \sim \mathcal{N}(0, \Sigma_{\mathbf{z}}), \mathbf{z} \sim \mathcal{N}(Zg, \Sigma_{\mathbf{zg}}(g))$$

- $\hat{\mathbf{z}}$: trajectory measurements
- g: hyperparameters defining prior distribution

Simulation

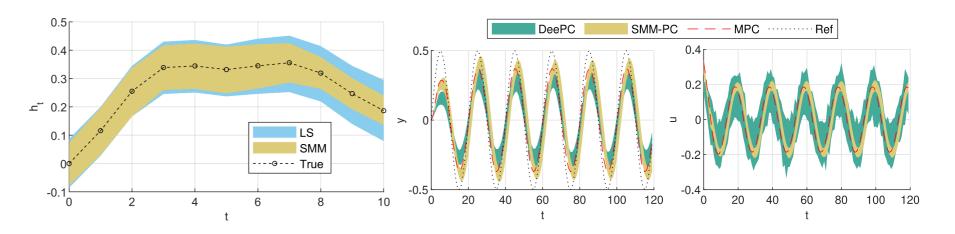
- Estimate outputs from known inputs and initial conditions
- **Condition:** u known exactly, first outputs $(y_i)_{i=0}^{L_0-1}$ measured as initial condition
- Prior knowledge of $(y_i)_{i=L_0}^{L-1}$ can be added as Gaussian process ٠

Signal denoising

- Denoise trajectory based on history trajectory data
- **Condition:** all the trajectories are measured with noise

Control design

- Optimal reference tracking by minimize $\|\mathbf{y} \mathbf{y}_{ref}\|_{Q}^{2} + \|\mathbf{u} \mathbf{u}_{ref}\|_{R}^{2}$
- Condition: $(u_i, y_i)_{i=0}^{L_0-1}$ measured past trajectory as initial condition $(\hat{u}_i, \hat{y}_i)_{i=L_0}^{L-1}$ set to reference trajectory corresponding elements in Σ_z are proportional to Q^{-1} & R^{-1}



ETH zürich

Signal Matrix Model in Simulation, Signal Denoising and Control Design

Mingzhou Yin, Andrea Iannelli, Roy S. Smith Automatic Control Laboratory, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

* This work was supported by the Swiss National Science Foundation under Grant 200021_178890.

1 Signal matrix model (SMM)

2 Applications

Why?

Conventional system identification paradigms rely on compact parametric models.

Challenges: systems are increasingly complex; how to use big data

Solution: moving from compact parametric models to implicit non-parametric trajectory models

Novelty: a statistically optimal approach to deal with noisy data

What?

Construct trajectory $\mathbf{z} = \operatorname{col}(\mathbf{u}, \mathbf{y})$ by combining **direct knowledge** and linear combination of noise-corrupted signal matrix.

Signal matrix: Hankel matrix of trajectory data

$$\mathbf{Y} = \begin{bmatrix} z_0^d & z_1^d & \cdots & z_{M-1}^d \\ \vdots & \vdots & \ddots & \vdots \\ z_{L-1}^d & z_{L_0}^d & \cdots & z_{M-1}^d \end{bmatrix}$$

Preconditioning: compress by SVD

 $Z \xrightarrow{\text{svd}} WSV^{\mathrm{T}}, \qquad \tilde{Z} \triangleq WS(:, 1:Ln_{\mathrm{z}})$

Noise-free case: Willems' fundamental lemma (Willems, 2005)

nown part
$$\rightarrow \mathbf{z}_1 = Z_1 g$$
, unknown part $\rightarrow \mathbf{z}_2 = Z_2 g^*(\mathbf{z}_1, Z_1)$

Noisy case: \hat{z} as trajectory measurements; g as hyperparameters defining prior distribution of z by Z

 $\hat{\mathbf{z}} = \mathbf{z} + \mathbf{w}_{\mathbf{z}}, \qquad \mathbf{w}_{\mathbf{z}} \sim \mathcal{N}(0, \Sigma_{\mathbf{z}}), \qquad \mathbf{z} \sim \mathcal{N}(Zg, \Sigma_{\mathbf{z}g}(g))$

For unknown parts in $\hat{\mathbf{z}}$, corresponding elements in $\Sigma_{z} \to \infty$.

Empirical Bayes step: solve for *g*

$$g^{\star} = \arg \max_{g} p(\hat{\mathbf{z}}|g)$$

= $\arg \min_{g} \log\det \left(\Sigma_{zg}(g) + \Sigma_{z} \right) + (\hat{\mathbf{z}} - Zg)^{T} \left(\Sigma_{zg}(g) + \Sigma_{z} \right)^{-1} (\hat{\mathbf{z}} - Zg)$

MAP estimation step: solve for z given g^*

$$\mathbf{z}^{\star} = \arg \max_{\mathbf{z}} p(\hat{\mathbf{z}} | \mathbf{z}) \cdot p(\mathbf{z})$$

= $\Sigma_{zg}(g^{\star}) (\Sigma_{zg}(g^{\star}) + \Sigma_{z})^{-1} \hat{\mathbf{z}} + \Sigma_{z} (\Sigma_{zg}(g^{\star}) + \Sigma_{z})^{-1} Z g^{\star}$

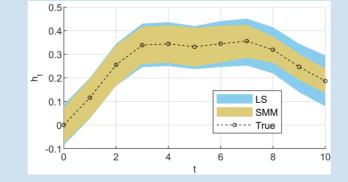
Simulation

Estimate outputs from known inputs and initial conditions.

Condition: u is known exactly, first outputs $(\mathbf{y}_i)_{i=0}^{L_0-1}$ are measured as initial condition

Prior knowledge of $(y_i)_{i=L_0}^{L-1}$ can be added as Gaussian process. e.g., stable spline kernels in impulse response simulation

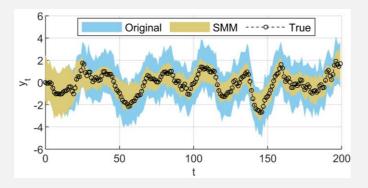
Example: impulse response simulation Benchmark: least-squares estimation

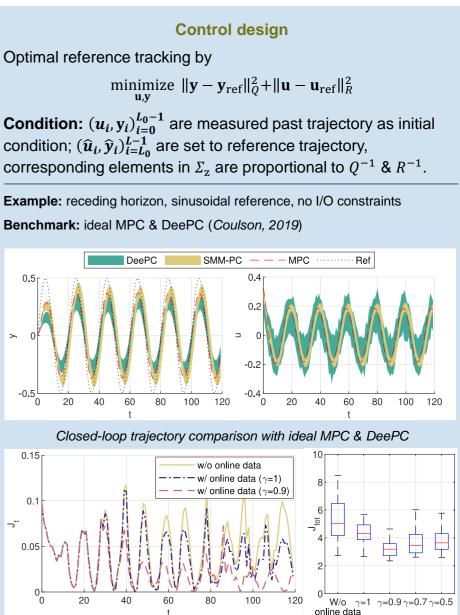


Signal denoising

Denoise trajectory based on history trajectory data. Condition: all the trajectories are measured with noise Online data can be added to the signal matrix:

 $Z_{t+1} = [\gamma Z_t \quad (z_i)_{i=t-L+1}^t], \quad \gamma:$ forgetting factor





References

control. arXiv:2011.00925, 2020. 1014 arXiv:2012 04678 2021

Mingzhou Yin, Andrea lannelli, and Roy S. Smith. Maximum likelihood signal matrix model for data-driven predictive control. Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:1004-

Online data adaptation for system with slow parameter drifts

Mingzhou Yin, Andrea lannelli, and Roy S. Smith. Maximum likelihood estimation in data-driven modeling and