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• Challenges:

• systems are increasingly complex

• how to use big data

• Solution: compact parametric models →
implicit non-parametric trajectory models

• Novelty: a statistically optimal approach to 

deal with noisy data

Simulation

• Estimate outputs from known inputs and initial conditions

• Condition: 𝐮 known exactly, first outputs 𝐲𝒊 𝒊=𝟎
𝑳𝟎−𝟏 measured as initial condition

• Prior knowledge of 𝐲𝒊 𝒊=𝑳𝟎
𝑳−𝟏 can be added as Gaussian process

Signal denoising

• Denoise trajectory based on history trajectory data

• Condition: all the trajectories are measured with noise

Control design

• Optimal reference tracking by minimize
𝐮,𝐲

𝐲 − 𝐲ref 𝑄
2+ 𝐮 − 𝐮ref 𝑅

2

• Condition: 𝒖𝒊, 𝐲𝒊 𝒊=𝟎
𝑳𝟎−𝟏 measured past trajectory as initial condition

ෝ𝒖𝒊, ෝ𝒚𝒊 𝒊=𝑳𝟎
𝑳−𝟏 set to reference trajectory

corresponding elements in 𝛴z are proportional to 𝑄−1 & 𝑅−1

ApplicationsSignal matrix model (SMM)
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• Construct trajectory by combining direct 

knowledge and signal matrix

• Signal matrix: Hankel matrix of trajectory 

data

• Noise-free case: Willems’ fundamental 

lemma

• Noisy case: MAP estimation

ො𝐳 = 𝐳 + 𝐰𝐳

𝐰𝐳 ∼ 𝒩 0, 𝛴z , 𝐳 ∼ 𝒩 𝑍𝑔, 𝛴zg(𝑔)

ො𝐳: trajectory measurements

𝑔: hyperparameters defining prior distribution
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Why?

Conventional system identification paradigms rely on 

compact parametric models.

Challenges: systems are increasingly complex;

how to use big data

Solution: moving from compact parametric models to implicit

non-parametric trajectory models

Novelty: a statistically optimal approach to deal with noisy data

Control design

Optimal reference tracking by

minimize
𝐮,𝐲

𝐲 − 𝐲ref 𝑄
2+ 𝐮 − 𝐮ref 𝑅

2

Condition: 𝒖𝒊, 𝐲𝒊 𝒊=𝟎
𝑳𝟎−𝟏 are measured past trajectory as initial 

condition; ෝ𝒖𝒊, ෝ𝒚𝒊 𝒊=𝑳𝟎
𝑳−𝟏 are set to reference trajectory, 

corresponding elements in 𝛴z are proportional to 𝑄−1 & 𝑅−1.

Example: receding horizon, sinusoidal reference, no I/O constraints

Benchmark: ideal MPC & DeePC (Coulson, 2019)

Closed-loop trajectory comparison with ideal MPC & DeePC

Online data adaptation for system with slow parameter drifts

Simulation

Estimate outputs from known inputs and initial conditions.

Condition: 𝐮 is known exactly, first outputs 𝐲𝒊 𝒊=𝟎
𝑳𝟎−𝟏 are 

measured as initial condition

Prior knowledge of 𝐲𝒊 𝒊=𝑳𝟎
𝑳−𝟏 can be added as Gaussian process.

e.g., stable spline kernels in impulse response simulation

Example: impulse response simulation Benchmark: least-squares estimation
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2 Applications1 Signal matrix model (SMM)

Signal denoising

Denoise trajectory based on history trajectory data.

Condition: all the trajectories are measured with noise

Online data can be added to the signal matrix:

𝑍𝑡+1 = 𝛾𝑍𝑡 𝑧𝑖 𝑖=𝑡−𝐿+1
𝑡 , 𝛾: forgetting factor

Example: online signal denoising, Gaussian input
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What?

Construct trajectory 𝐳 = col 𝐮, 𝐲 by combining direct knowledge 

and linear combination of noise-corrupted signal matrix.

Signal matrix: Hankel matrix of 

trajectory data

Preconditioning: compress by SVD

𝑍
svd

𝑊𝑆𝑉T, ෨𝑍 ≜ 𝑊𝑆(: , 1: 𝐿𝑛z)

Noise-free case: Willems’ fundamental lemma (Willems, 2005)

Noisy case: ො𝐳 as trajectory measurements; 𝑔 as hyper-

parameters defining prior distribution of 𝐳 by 𝑍

ො𝐳 = 𝐳 + 𝐰𝐳, 𝐰𝐳 ∼ 𝒩 0, 𝛴z , 𝐳 ∼ 𝒩 𝑍𝑔, 𝛴zg(𝑔)

For unknown parts in ො𝒛, corresponding elements in 𝛴𝑧 → ∞.

Empirical Bayes step: solve for 𝑔

MAP estimation step: solve for 𝐳 given 𝑔⋆

𝐳⋆ = argmax
𝐳

𝑝(ො𝐳|𝐳) ⋅ 𝑝(𝐳)

= 𝛴zg(𝑔
⋆) 𝛴zg(𝑔

⋆) + 𝛴z
−1
ො𝐳 + 𝛴z 𝛴zg(𝑔

⋆) + 𝛴z
−1
𝑍𝑔⋆

𝑍 =
𝑧0
𝑑 𝑧1

𝑑 ⋯ 𝑧𝑀−1
𝑑

⋮ ⋮ ⋱ ⋮
𝑧𝐿−1
𝑑 𝑧𝐿0

𝑑 ⋯ 𝑧𝑁−1
𝑑

known part unknown part 𝐳2 = 𝑍2𝑔
∗(𝐳1, 𝑍1)𝐳1 = 𝑍1𝑔,

𝑔⋆ = argmax
𝑔

𝑝(ො𝐳|𝑔)

= argmin
𝑔

logdet 𝛴zg(𝑔) + 𝛴z + ො𝐳 − 𝑍𝑔 T 𝛴zg(𝑔) + 𝛴z
−1

ො𝐳 − 𝑍𝑔


	PC07
	PC07_Signal Matrix Model in Simulation, Signal Denoising and Control Design

