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Abstract: The paper proposes a multi-step identification approach to classify a nonlinear
system into qualitatively different regimes and then estimate a low-dimensional subspace where
predictions of the original state at future times can be obtained by simulation of low-order
dynamics. Proper Orthogonal Decomposition is used to build a library of characteristic modes
from training data and is combined with regularization techniques for both the classification
and estimation problems. Group Lasso is proposed to more effectively perform the former task.
Moreover, ¢; and {5 regularization problems with singular values weighting of the dynamic
modes are suggested to handle the estimation problem in complex scenarios where limited
measurement points are available or sensors are noisy. Results obtained on the Rijke tube system,
a nonlinear thermoacoustic benchmark problem, demonstrate better classification accuracy and
lower prediction error compared with a method from the literature.
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1. INTRODUCTION

Models of dynamical systems are traditionally derived
from first principles by leveraging domain knowledge. This
practice often results in high-order nonlinear partial differ-
ential equations (PDEs) that finely describe the interac-
tion among physical variables, e.g. pressure and velocity in
an incompressible fluid (Schmid and Henningson, 2001).
While this provides valuable information on detailed as-
pects of the system, the complexity of the model often rules
out its use in applications where fast computations are
required, e.g. real-time control. Moreover, models always
rely on arbitrary assumptions on the system description
and are thus susceptible to uncertainty (Iannelli et al.,
2020). Unfortunately, assessing robustness of the high-
dimensional nonlinear PDE models typically arising from
first-principles modeling is often intractable.

Prompted by these shortcomings, increasing interest has
been devoted to well-established techniques allowing the
extraction of low-order structures from simulations of com-
plex systems (Holmes et al., 2012), with the intent of
extending them to the general problem of identifying non-
linear dynamics from experimental data. An interesting
work in this research direction was presented in (Brunton
et al., 2014), where the identification of nonlinear systems
in distinct regimes, each corresponding to qualitatively
different response features, is proposed. Proper Orthogonal
Decomposition (POD) is used to obtain a library of rep-
resentative dynamical modes for each bifurcation regime
and compressive sensing techniques are used to classify a
given partial-state measurement into one of the bifurcation
regimes. Following the classification, predictions of future
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state trajectories are made using a Galerkin projection-
based scheme, whereby the coefficients of the POD modes
become the new low-dimensional states. Thus, once the
initial value of these fictitious states is estimated from
the partial-state measurement, low-order dynamics can be
used to predict the time-evolution of the coefficients and,
from these, of the original states.

In this work, a further step is taken by combining the
POD-based dimensionality reduction approaches with reg-
ularization techniques from the statistical learning com-
munity (Hastie et al., 2001). First, the classification step is
formulated using Group Lasso, which promotes sparsity of
groups of modes rather than of the single modes, with tan-
gible benefits in the cases where the different regimes share
similar modes. For the second step of the algorithm, con-
sisting of estimating the low-order Galerkin state, regular-
ized regression problems are proposed, particularly suited
for underdetermined (number of measurements smaller
than number of POD modes) or noisy scenarios. The
proposed regularization problems include weighted ¢; and
{5 norms defined based on the singular values of the POD
modes, which provide a priori information (from data) on
the relevance of each mode.

Application of the proposed approach is demonstrated on
a thermacoustic problem. This subject is concerned with
the interaction between heat transfer and sound waves
and it is of well-motivated interest owing to its potential
application for energy harvesting (Swift, 2007). We use
a model of the Rijke tube described by a set of nonlinear
PDEs (Sayadi et al., 2014) to generate the (synthetic) data
used by the algorithm. The results confirm the advantages
of the proposed regularization solutions, especially for
scenarios typically arising in experimental settings.



2. MULTI-STEP IDENTIFICATION APPROACH

This section describes the proposed methodology for the
nonlinear identification problem considered in this work.

It is assumed that the response of the nonlinear system
under study can be qualitatively divided in J distinct
regimes denoted by §; (with j = 1,2,..,J). Each regime
is associated with different values of some fundamental
parameters on which the system dynamics depend, thus
they will be informally referred to as bifurcation regimes.
We consider autonomous vector fields where, in a generic
regime 7, the state Y € R" evolves according to a set of
ordinary differential equations (ODE)

Y =f(Y,5), Y(0)=Yo. (1)
Given a partial measurement of the state at a certain
time,the approach proposed in this work aims at: iden-
tifying the bifurcation regime to which the measured state
belongs; and predicting the full-state of the system at any
future time. The following sections detail the three steps
through which this objective is achieved.

2.1 Step 1 - Bifurcation library

The first step of the algorithm consists of building, in each
bifurcation regime, a library of system’s responses via the
snapshot matrix A; containing ¢ observations

Ay =[Y;(t) Y(ta) ... Yjltg)], Aj € R™,
where Y; denotes the full-state observed in the regime 3;,
and typically ¢ < n. The sampling window ([t1,%,]) and
(possibly non-uniform) sampling time are chosen in order

to sufficiently capture the main features of the system’s
response. The singular value decomposition (SVD) of A;
A; =V;5,Q7, (2)
provides the ¢ POD modes of regime [3;, namely the
columns of ¥; € R™*9. The energy captured by each
mode is proportional to the square of the corresponding
diagonal entry of ¥; (Holmes et al., 2012). By setting an
energy threshold, the least dominant (¢ — ;) modes can
be discarded and the matrix of retained POD modes is
denoted by ‘I';j € R™*"i. The bifurcation library is made
of the POD modes obtained in each bifurcation regime

\I/:[\I’l \IJQ...\I’J], \IIERnXp,

where p = Z;.Izl rj. A generic state Y in any of the J
bifurcation regimes can then be approximated as

T T T
Y=Va, a=lay...a;], aj=laj1...a5,,] , (3)

where the coefficient vector a gives information on the

contribution of every POD mode to the state Y.

2.2 Step 2 - Classification of the bifurcation regime

In experimental settings, full-state measurements are not
available, and more realistically one has m measurements
taken from a limited number of sensors. The objective
here is to identify, from these partial measurements taken
at a certain time, the bifurcation regime from which the
signal comes. To this aim, a compressive sensing approach
is employed. First, the measured state vector Y € R™ is
written as a function of the full-state Y = ®Y by means
of the appropriately defined matrix ® € R™*" with 0

and 1 entries. By using the bifurcation library (3), the
measurements vector ¥ can be rewritten

Y =®Wa="Ta, TcR™. (4)
Notice that in typical applications, m < p, i.e. the number
of measurements is smaller than the number of POD
modes across all the bifurcation regimes. In this case,
Eq. (4) is underdetermined. Note also that not all modes
in ¥ are required for the reconstruction, but only those
from the regime (; from which the observation comes.
Therefore, the coefficients vector a is sparse. This fact
was leveraged in (Brunton et al., 2014) to propose a
Lasso regression problem for finding the coefficient vector
a better explaining the measurement

a0 = argmin (¥ = Yal + Allall1) . (5)

where the ¢; regularization, as is well known (Hastie
et al., 2001), promotes sparsity of the solution, and the
hyperparameter A can be selected by cross-validation. The
bifurcation regime associated with the measurement Y can
then be inferred by looking at the largest (in absolute
value) coefficient entry (i.e. the most activated mode).

Unfortunately, this strategy can lead to misclassifications
when different regimes have similar modes that can equally
well explain the data. Measurements can then be wrongly
attributed to a regime where a mode similar to the one
in the correct regime is activated, even though the other
modes in the wrong regime cannot explain them. The
issue is that the vector a is in truth sparse with respect
to the bifurcation regimes rather than to the modes. For
this reason, in this paper it is proposed to classify the
bifurcation regime via a Group Lasso problem (Yuan and
Lin, 2006)
J
aSlasso — aremin [ ||V — Tal|2 + )\Z llajll2 ] . (6)
a ]:1

In (6), the cost function is modified so that the regulariza-
tion term features the sum of ¢5 norms of the coefficients
of each group. It combines ¢; (across different groups) and
£y (within the same group) regularizations. The rationale
for this is that the predictor a belongs to some pre-defined
group (i.e. the bifurcation regime), as given by its defini-
tion in (3). Thus, it is advantageous to select the members
of a group together, while leaving the rest of the modes
inactive. The hyperparameter selection consists of finding
the smallest A for which only one group is activated.

The classified regime will be denpted by ;7 and the corre-
sponding set of POD modes by ¥, (with coefficients a,).

2.8 Step 3 - State estimation and simulation

Once the bifurcation regime to which the system belongs
has been detected, the objective is to form, from the data,
a low-order approximation of the dynamics (1), which
allows the value of the full-state vector Y at future times
to be predicted at less computational cost. In the spirit
of Galerkin projections methods (Holmes et al., 2012),
this is achieved by considering a linear subspace of the
original state-space having size r; and spanned by \ifj
onto which the dynamic evolution of the coefficients a;
can be described. The set of POD modes ‘i'j thus provides



the operator whereby: the full-state Y is projected onto
the subspace where a evolves; and a is lifted back to the
original state-space. This problem can be decomposed into
two sub-steps.

State estimation  The first step consists of estimating the
initial state ag € R4 of the low-order dynamics. According
to the previous discussion, this can be approximated as
Y~ \i/jdo, where Y is the measured state vector.

A least-squares (LS) problem was proposed in (Brunton
et al., 2014) to find the initial state

ap = argmin (HY — 'fja“g) , (7)

where Tj = <I>\i/j € R™*7 ig the regressor. This approach
however does not prove to be robust in two scenarios
commonly encountered in experiments: noisy state mea-
surements (where LS is prone to overfitting); and sparse
measurements m < r; (resulting in an underdetermined
problem). For this reason, we investigate the use of regu-
larization to solve the low-order state estimation problem.

When the presence of noise is of prime concern, a valid
alternative to the standard LS is ridge regression

ao = argmin (|[V" = Tallf + Alall2) . (8)

which consists of adding an ¢ norm penalty term to
(7). An alternative is to consider in (8) an ¢; penalty
to incentivize sparsity of ag, leading to a Lasso problem.
Observe that, differently than in (5), this Lasso problem
assumes sparsity within the classified regime.

In the underdetermined case, there exists a subspace of
solutions g satisfying (7) with zero residual. The classic
approach (also suggested in (Brunton et al., 2014)) consists
of taking the pseudo-inverse of ¥;, namely ay NV = \I!;fff
Note that a§™V coincides with the minimizer of the
following constrained ¢ norm projection, or least-norm
(LN) problem

min_ ||af[2,
a

A (9)
st. Y —T;a=0.
An alternative, when there is the same sparsity prior
commented on earlier, is to penalize the £; norm of the
solution, leading to a basis pursuit (BP) problem.

We observe now that, thus far, the only information that
is used from the data is the set of POD modes (upon
which the lower-dimensional subspace where the predictor
is defined can be computed). However, when the bifur-
cation library is computed, the energy associated with
each mode is also available in the form of the singular
values on the diagonal elements of 3; (2). They provide
a measure of the dominance of the corresponding modes
in the measured response. It could then be favourable to
leverage this information in the projection step, especially
in those circumstances (noisy data or underdetermined
instances) where the classification problem is more chal-
lenging. Motivated by this, the four regression problems
illustrated before are modified by introducing weights on
the regularization terms that are inversely proportional to
the singular values of the modes. Specifically, we define
IZ}j = [l/i]&,ﬂl/ijz,z’ veny l/ijrj,rj]’ where i:hz is the i-
th diagonal entry of the matrix of singular values for the

bifurcation regime j. The weighted ridge (8) and least-
norm (9) problems can then be rewritten as

o = argmin (|[V = Vjal§ + Alw; eall:),  (10)

and ) X
min [[i; o .

. (11)

st. Y — T]‘a = 0,
respectively, where o denotes the Hadamard product. The
weighted penalty terms thus fuse information from data
(i.e. the singular values) and regularization. Equivalent
modifications lead to the weighted Lasso and BP problems.

Simulation  All the discussion below refers to the bifur-
cation regime where the response has been classified, and
the related subscript j is dropped for clarity.

Given the initial state ag of the low-order dynamics
estimated at the previous step, the dynamic evolution of a
can be simulated and, from it, the original full-state Y can
be predicted. As also suggested in (Brunton et al., 2014),
this can be done by using Galerkin projection
a="0"f(Va,B;), a(0)= ao, (12)
where the right hand side of (12) comes from projecting
the original dynamics onto the POD modes and exploiting
the fact that they form an orthogonal basis. The full-state
is then available at all times by lifting the coefficient vector
to the original state space via Y = Wa. It is worth noting
that, unlike in standard model-based Galerkin methods,
the computation of the modes comes here entirely from
the data, together with the initial condition. This has the
advantage that it is not required to fix a priori the shape
for the modes (e.g. sinusoidal functions with pre-defined
frequencies). The method however still partially relies on
the knowledge of the system since evaluation of the vector
field f is required in (12), but notably it does not require
simulation of (1), instead only of lower dimensional ODEs.

3. THE RIJKE TUBE SYSTEM

The Rijke tube is the nonlinear thermoacoustic system
used to demonstrate the application of the proposed iden-
tification method. It consists Fig. (1) of a tube of length L
and a lumped heat source located at z;. In the horizontal
configuration, there is a uniform air flow with speed u and
the goal is predicting v and p, i.e. the deviations of the
velocity and pressure fields with respect to @ and ambient
pressure, respectively.

K

Fig. 1. Schematic of the Rijke tube system.

We follow (Sayadi et al., 2014) to implement a first-
principles model of the system used to generate the data
for testing the algorithm. A set of PDEs coming from
momentum and energy balances and linearized about a



steady-state solution is used to describe the velocity and
pressure field inside the tube. The states thus represent
deviations from the steady-state values and are non-
dimensionalized. The heat released from the wire acts as
source term in the energy balance, and depends on the gas
velocity via the King’s Law (Epperlein et al., 2015). This
describes a saturation-type nonlinearity and is the key
element triggering the nonlinear responses described later.
There is also a delay 7 between the gas velocity and the
heat release (modelled with a first order approximation).
The spatial discretization of the PDEs is done using a
staggered scheme. Denoting the number of grid points by
N, this results in a state vector Y € R?N~! composed
of N wvelocity and N — 1 pressure states, specifically
Y = [U1/27 "Ui—1/2"7 UN—1/27 Pl, .PZ7 PNfl}T. In all the
analyses shown later N = 64, and thus the states are
n = 127. The resulting model is in the ODE form (1).

The effect of two fundamental parameters, namely the
heat strength K and location zy, is investigated. The
other parameters are set to the same values considered
n (Sayadi et al., 2014), and the time delay 7 = 0.05.
All variables are adimensionalized with respect to velocity,
pressure, length and time reference scales. The reference
time scale is g—;’, i.e. the ratio between the tube length
and the velocity of sound in air at standard conditions.
The nonlinear behaviour of the system is qualitatively
investigated via time-domain simulations by perturbing
the initial condition of the velocity at the heat source.
The effect of increasing the heat strength for a fixed heat
source location and delay is analysed in Fig. 2(a)-(c).
For this analysis, the heat source location is chosen as
zy = 0.25. In Fig. 2(a), where K = 0.3, the system is
stable and the response is visibly damped; in Fig. 2(b),
where K = (.75, the system is still stable, but the response
is visibly less damped. At approximately K = 0.8 the
system undergoes a Hopf bifurcation. The case of K = 1.5
shown in Fig. 2(c) shows an initially diverging response
that eventually settles onto a Limit Cycle Oscillation. The
effect of changing the heat source location can be observed
in Fig. 2(d) where the time series for the case K = 2.5
and zy = 0.64 is provided. The heat source location
affects the dominant mode of the system and hence the
frequency of the response. Precisely, the frequency of the
LCO in Fig. 2(c) is w, while the one in Fig. 2(d) is
2m. Note that the heat source typically lies in the first
quarter of the tube (Epperlein et al., 2015), and the latter
configuration is illustrated here for the sake of exploring
different nonlinear responses of the system. The considered
bifurcation regimes are summarized in Table 1.

Table 1. Bifurcation regimes of the Rijke tube.

K T Description
B1 0.3 | 0.25 stable (highly damped)
B2 | 0.75 | 0.25 | stable (close to bifurcation point)
B3 1.5 | 0.25 LCOs (first mode dominant)
Ba | 2.5 | 0.64 LCOs (second mode dominant)
4. RESULTS

In this section, the identification method developed in
Section 2 is applied to the Rijke tube system for the
regimes defined in Table 1. In the first step (Section 2.1),
sampling is done via 20 uniformly spaced points (g = 20).
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Fig. 2. Velocity at x = 0.125 for different parameters.

For the stable regimes (f1, 82), the sampling window is
designated as the time interval ¢ = 25—45 and for the limit
cycle regimes (3, 84), as one period at steady state. Table
2 reports the number of POD modes selected for each
regime using different energy thresholds for the truncation
of the singular values. Unless otherwise specified, an energy
threshold of 99.9% is used in the analyses.

Table 2. Number of modes (r;) of each param-
eter set (5;) for different energy thresholds

Energy threshold | r1 | r2 | 73 | 74
80% 2 3 3 2
92% 3 3 4 2

99.9% 3 3 6
99.99% 4 5 | 11 | 11

4.1 Classification

The performance of the second step of the proposed algo-
rithm (Section 2.2) is investigated here. As a first illustra-
tive example, Fig. 3 shows the output of the classification
methods for a measurement vector consisting of m = 30
measurements (15 equally spaced pressure and velocity
states) sampled at time instant ¢, = 970 in the S5 regime.
The implementations of Lasso and Group Lasso are taken
respectively from (Friedman et al., 2010) and (Boyd et al.,
2011).
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Fig. 3. Classification using (a) Lasso, (b) Group Lasso.

Results indicate that Lasso not only activates modes
from different regimes, but also estimates the highest



activated mode in the wrong regime and thus leads to
misclassifications, while this is avoided with Group Lasso
by activating modes in only one regime.

To quantitatively compare the performance of the two clas-
sification approaches, measurements at 100 random time
instants are tested for each regime. The resulting confusion
matrices (Fig. 4) show the distribution of correct and
incorrect classifications in the four bifurcation regimes. It
can be noticed that there is a general tendency for mis-
classication among the regimes 31, f2 and B3, due to the
fact that they share similar modes. This is ameliorated in
the case of Group Lasso, where the ambiguity is limited to
the two stable regimes. Overall, Group Lasso achieves 86%
of classification accuracy, while Lasso has a classification
accuracy of 76%.
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Fig. 4. Confusion matrices for (a) Lasso (b) Group Lasso.

Finally, the effects of the energy threshold used to build
the bifurcation library and the number of measurements
on the classification accuracy are presented in Table 3. If
the number of measurements is low, a lower threshold is
better for high classification accuracy, but if the number
of measurements is high, a higher threshold can help
overcoming the misclassification issues discussed above.

Table 3. Classification accuracy.

Lasso Energy Threshold
Number of measurements | 80% | 92% | 99.9% | 99.99%
6 62% 58% 51% 40%
14 75% 1% 62% 57%
30 73% | 62% 76% 61%
Group Lasso Energy Threshold
Number of measurements | 80% | 92% | 99.9% | 99.99%
6 81% | 63% 52% 40%
14 5% | 64% 82% 77%
30 76% 70% 86% 67%

4.2 State estimation

Having classified the bifurcation regime to which the
system’s response belongs, the initial condition ay can be
computed (Section 2.3). The accuracy of this procedure is
investigated by looking at the reconstruction of the full-
state vector using the relationship ¥ ~ \iljao, which can
be compared with the true one. The analyses will focus
on the f3 regime with six modes (r3 = 6). These are also
representative of the results for the other regimes.

Qualitative aspects are first analyzed by means of Fig. 5,
where the estimation at ¢,,, = 970 is investigated by consid-
ering three different scenarios. Fig. 5(a) considers a nom-

inal case where 30 noise-free measurements are available.
The LS estimate (7) matches almost perfectly the true
state vector, similarly for ridge (8) and weighted ridge (10)
formulations. Fig. 5(b) shows the reconstruction results

when Y is contaminated with i.i.d. zero-mean Gaussian
noise with variance 02 = 0.36. In this case, the weighted
ridge method outperforms the LS and ridge methods by
producing the closest reconstruction to the true state,
and preserving the discontinuity of the velocity field at
the heat source location. Fig. 5(c) examines the noise-free
underdetermined case where only m = 4 measurements
are available. The estimate obtained with the LN approach
(9) is markedly inaccurate, while solving the same problem
by using the singular values as weights (11) considerably
improves the result.
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Fig. 5. State reconstruction (a) m=30 noise-free; (b) m=30
noisy; (c¢) m=4 noise-free.

A quantitative analysis of the accuracy of the algorithms
for the state reconstruction is performed using the last
two scenarios, because in the noise-free overdetermined
case the methods produce, as already commented, the
same results and the error monotonically decreases with
increasing number of modes. The effect of changing the
number of modes 7; in the library is studied by randomly
sampling 100 time instants at which the reconstruction
is performed, and plotting the relative error given by
the Euclidean distance between estimated and true state
normalized by the Euclidean norm of the true state. In
the following analyses, variations due to the different time
instants are captured using the box plot representation.

In the noisy overdetermined case (Fig. 6(a)), the LS
method shows overfitting, as observed by the increase in
error as r; increases. This is to some extent ameliorated
by the regularized methods, especially when weighted ex-
tensions are employed. The advantage of using weighted
regularizations is further showcased in Fig. 6(b), where the
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underdetermined case is analyzed. The standard LN and
BP approaches suffer high errors when a larger number
of POD modes is employed, while the solutions using
weighted norms prove successful. The reason is that less
dominant modes will have a higher relative impact on the
penalized norm, and thus a priori (data-driven) informa-
tion on the relevance of the single modes further regularize
the underdetermined problem.

4.8 Simulation

Once estimated the initial state ag of the low-order pro-
jected dynamics, full-state trajectories can be predicted
(12). For the same two scenarios analyzed earlier (but only
considering ridge and LN approach for clarity), starting
from 100 random time instants, the dynamic evolution in
an interval of 5 time units is computed and the error with
respect to the true state sequence is evaluated (Fig. 7). To
compute the relative error, the snapshot matrices of the
true and predicted state sequences are constructed and
the ratio between the Frobenius norm of their differences
and the Frobenius norm of the matrix with the true state
sequence is computed. The results labelled Galerkin are
obtained using the model-based Galerkin projection pro-
posed in (Juniper, 2011) and making use of pre-defined
sinusoidal modes. The observed superior performance of
the proposed solutions testifies to the advantages of using
a POD-based Galerkin projection where the modes are
computed from data, rather than using a pre-defined set
of modes which might be less representative since they do
not take into account any specifc feature of the system.

5. CONCLUSION

An approach to identify the nonlinear regimes of a dy-
namical system from partially observed states and predict
the future state evolution using low-order dynamics is
proposed. It combines Proper Orthogonal Decomposition-
based dimensionality reduction techniques and regular-
ization approaches from statistical learning. The novel
combination of these two methodologies is believed to
be particularly useful when studying complex nonlinear
dynamics featuring similar modes across different response
regimes and/or when only very limited or noisy measure-
ments are available. Detailed investigations carried out
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Fig. 7. State simulation error as a function of r;: (a) m=30
noisy; (b) m=4 noise-free.

on a thermoacoustic benchmark problem confirm these
claims and showcase improved performance with respect
to model-based or standard estimation techniques.
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