

Regularized and Nonparametric Approaches in System Identification and Data-Driven Control

Mingzhou Yin February 19, 2024

......

System identification

"classical" data-driven control

Paradigm of system identification: a two-step approach

From system identification to learning

- 1 Data collection
- 2 Selection of model structure
 - Compact structure
 - Parameter estimation
- **3** Determining the "best" model
 - Prediction error method
- 4 Model validation

- Similar framework to supervised learning
- Motivation: More complex systems & more data
- Main difference: Do we have/require a compact structure for the model?
- Two paths:
 - Borrow tools from learning theories ⇒ regularized approaches
 - 2 Accept over-parameterized models ⇒ nonparametric approaches

An overview

Regularized approaches

Preserve system-theoretic properties in learning

- Learn pole locations in sparse learning (CDC'22), kernel learning (IFAC'20)
- Reliable uncertainty models in kernel learning (L-CSS'23)

Nonparametric approaches

Stochastic nonparametric prediction without a model

- Stochastic prediction by MLE (TAC'21, ECC'22), matrix denoising (SYSID'21)
- Data-driven predictive control with stochastic predictions (L4DC'21, SYSID'24)
- Application to building control (AE'24)

Periodic systems

Beyond LTI systems: making use of periodicity

- Learn linear periodic systems (IFAC'20, L-CSS'21)
- Kernel learning of nonlinear systems with periodic models (CDC'22)

Regularized approaches

with more and more parameters

Paradigm shift in system identification

Method	Parameter estimation	Kernel learning	Sparse learning
Theory	Classical statistics	Nonparametric statistics	High-dimensional statistics
Regime	$n \ll N$	n pprox N	$n \gg N$
Prior info.	Low dimension	Smoothness	Sparsity
Tool	MLE	RKHS, GP	Lasso, compressive sensing
Algorithm	Prediction error method	Kernel-based identification	Atomic norm regularization
Problem	Model structure selection	Complexity measure	Bias, false positives

Pole location estimation by sparse learning

► Sparse model decomposition: $G_0(q) = \sum_{k \in K} c_k A_k(q)$

- $A_k(q) = \frac{1 |k|^2}{q k}$: set of first-order model features
- $K = \left\{ k = \alpha \cdot e^{j\beta} \, | \, \alpha \in [0,1), \beta \in [0,2\pi) \right\}$: set of stable poles
- $c_k \in \mathbb{C}$: sparse coefficients to be identified
- Simultaneous estimation of model & pole locations: $S = \{k \mid |c_k| > 0\}$
- ► A sparse learning problem: *l*₁-norm regularization

$$\min_{\{c_k\}_{k\in K}} \quad \left\| \left| \mathbf{y} - \sum_{k\in K} c_k \, \phi_k \right\|_2^2 + \lambda \sum_{k\in K} |c_k| \,, \quad \phi_k \text{: response of } A_k(q) \text{ under input } \mathbf{u} \right\|_2$$

but... an infinite-dimensional problem

Observation from the optimality conditions

Equivalent real-valued problem: a group lasso problem

$$\min_{\left\{\gamma_k\right\}_{k\in\hat{K}}} \left\| \left| \mathbf{y} - \sum_{k\in\hat{K}} \zeta_k \gamma_k \right\|_2^2 + 2\lambda \sum_{k\in\hat{K}} \left\|\gamma_k\right\|_2$$

$$\gamma_k = \begin{bmatrix} \Re(c_k) & \Im(c_k) \end{bmatrix}^{\top}, \quad \zeta_k = \begin{bmatrix} 2\Re(\phi_k) & -2\Im(\phi_k) \end{bmatrix}, \quad \hat{K}: \text{ upper unit disk}$$

► The optimality conditions are

$$\begin{cases} \left\| \zeta_k^\top R \right\|_2 \le \lambda, & \text{if } \left\| \gamma_k^\star \right\|_2 = 0, \\ \zeta_k^\top R + \lambda \gamma_k^\star / \left\| \gamma_k^\star \right\|_2 = 0, & \text{if } \left\| \gamma_k^\star \right\|_2 > 0 \end{cases}, \quad \overbrace{R = \mathbf{y} - \sum_{k \in \hat{K}} \zeta_k \gamma_k^\star}^{\text{output residuals}} \end{cases}$$

The infinite-dimensional algorithm

For a finite-dimensional solution w.r.t. $\hat{K}_d = \{k_1, k_2, \dots, k_p\}$, if a new pole is added $\hat{K}_d^+ := \hat{K}_d \cup \{k_{p+1}\}$, the trivial solution

$$\gamma_i^{\star}(\hat{K}_d^+) = \begin{cases} \gamma_i^{\star}(\hat{K}_d), & i = 1, \dots, p, \\ \mathbf{0}, & i = p+1, \end{cases}$$

holds iff $\left\|\zeta_{k_{p+1}}^\top R(\hat{K}_d)\right\|_2 \leq \lambda.$

- k_{p+1} is only a meaningful pole when $\left\|\zeta_{k_{p+1}}^{\top}R(\hat{K}_d)\right\|_2 > \lambda$
- Greedy algorithm: Add new pole k_{p+1} that maximizes $\left\|\zeta_{k_{p+1}}^{\top} R(\hat{K}_d)\right\|_{2}$ (\bigtriangleup)

Properties:

- ► Optimality conditions satisfied with *e*-tolerance
- ▶ Objective decreases every iteration even if (△) is not solved exactly

Numerical example

4th-order system, data length N=100, 100 simulations, λ selected by cross-validation

- Atom: discretized solution with 50 poles
- Atom2: discretized solution with 500 poles
 - InfA: inf-dim solution starting from 50 poles (~100 poles at convergence)
- Yellow : 20 dB SNR Cyan : 40 dB SNR

Nonparametric approaches

model is merely input-output mapping

Paradigm of data-driven control: prediction via input-output mapping

Idea: (Willems' Fundamental Lemma) For linear systems,

- Any linear combination of trajectories is still a trajectory
- ► If we have sufficiently 'good' data...
- ... linear combinations of such data cover all possibilities

Prediction via nonparametric input-output mapping

Data collection:

- ► If $rank(Z) = n_u L + n_x$, all valid trajectory z can be parametrized by $g \in \mathbb{R}^M$: $\mathbf{z} = Zg$
- ► By fixing inputs $\mathbf{u} \in \mathbb{R}^{n_u L'}$ & initial condition $\mathbf{u}_{ini} \in \mathbb{R}^{n_u L_0}$, $\mathbf{y}_{ini} \in \mathbb{R}^{n_y L_0}$,
- ► ... the other outputs can be predicted:

$$\mathbf{y} = f(\mathbf{u}; \mathbf{u}_{\text{ini}}, \mathbf{y}_{\text{ini}}) : \begin{bmatrix} \mathbf{u}_{\text{ini}} \\ \mathbf{u} \\ \mathbf{y}_{\text{ini}} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} U_p \\ U_f \\ Y_p \\ Y_f \end{bmatrix} g$$

From noise-free data to stochastic data

What if we have uncertainties?

- \blacktriangleright Z : full row rank almost surely
- ► y can be anything

$$orall \mathbf{y} \in \mathbb{R}^{n_y L'}, \exists \, g : egin{bmatrix} \mathbf{u}_{\mathsf{ini}} \ \mathbf{y} \ \mathbf{y} \end{bmatrix} = egin{bmatrix} U_p \ Y_p \ U_f \ Y_f \end{bmatrix} g$$

Ill-defined input-output mapping

Multiple paths out:

- 1 Subspace identification
- 2 Direct data-driven predictive control
- 3 Indirect data-driven predictive control: accept full-rank Z and fix one unique g

A hard "parameter estimation" problem of \boldsymbol{g}

- Noise on both sides: $\mathbf{y}_{ini} = Y_p g$
- ► A subspace of true parameters g₀
- ► Error evaluated on an unknown projection *Y*_fg

The signal matrix model

a maximum likelihood approach

Find the g that maximizes the likelihood of observing the predicted output trajectory y

$$g_{\text{SMM}} = \arg\min_{g} \underbrace{\log\det(\Sigma_{y}(g))}_{\text{Uncertainty of prediction}} + \underbrace{\begin{bmatrix} Y_{p}g - \mathbf{y}_{\text{ini}} \\ \mathbf{0} \end{bmatrix}^{\mathsf{T}} \Sigma_{y}^{-1}(g) \begin{bmatrix} Y_{p}g - \mathbf{y}_{\text{ini}} \\ \mathbf{0} \end{bmatrix}}_{\text{Deviation from past output measurements}}$$
s.t.
$$\begin{bmatrix} \mathbf{u}_{\text{ini}} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} U_{p} \\ U_{f} \end{bmatrix} g$$

$$\blacktriangleright \Sigma_{y}(g) = \left(g^{\mathsf{T}} \otimes \mathbb{I}\right) \operatorname{cov} \left[\operatorname{vec}\left(\begin{bmatrix} Y_{p} \\ Y_{f} \end{bmatrix}\right)\right] (g \otimes \mathbb{I}) + \begin{bmatrix} \sigma^{2} \mathbb{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Predictor as an online lower-level program

The signal matrix model

a stochastic predictor

► Two sources of error:

$$\mathbf{y} - \mathbf{y}_0 = \Gamma \underbrace{\left(\delta + \epsilon_{\text{ini}} - E_p g\right)}_{\ell = 0} + \underbrace{E_f g}_{\ell = 0}$$

initial condition mismatch

$$\Gamma = \begin{bmatrix} CA^{L_0} \\ \vdots \\ CA^{L-1} \end{bmatrix} \begin{bmatrix} C \\ \vdots \\ CA^{L_0-1} \end{bmatrix}^{\dagger}$$

 \sim autonomous transformation matrix from \mathbf{y}_{ini} to \mathbf{y}

Theorem: Statistics of stochastic data-driven predictors

The stochastic predictor is given by $\mathbb{E}\left[\mathbf{y}\right]=\bar{\mathbf{y}},\ \text{cov}\left(\mathbf{y}\right)=\Sigma$, where

$$\bar{\mathbf{y}} = Y_f g - \Gamma \left(Y_p g - \mathbf{y}_{\text{ini}} \right), \quad \Sigma = \sigma^2 \left\| g \right\|_2^2 \left(\Gamma \Gamma^\top + \mathbb{I} \right) + \Gamma \Sigma_{\text{yini}} \Gamma^\top$$

noise in Y_f

Exact distribution requires unknown model parameter Γ

but can be estimated by a data-driven approach (and assume certainty equivalence)

Data-driven predictor in stochastic predictive control

$$\min_{\mathbf{u}^{t}} \quad \left\| \mathbf{u}^{t} \right\|_{R}^{2} + \mathbb{E} \left[\left\| \mathbf{y}^{t} - \mathbf{r}^{t} \right\|_{Q}^{2} \right]$$

s.t.
$$g^t = g_{\text{SMM}}(\mathbf{u}_{\text{ini}}^t, \mathbf{y}_{\text{ini}}^t, \mathbf{u}^t)$$

$$\bar{\mathbf{y}}^t = Y_f g^t - \Gamma(Y_p g^t - \mathbf{y}_{\text{ini}}^t)$$

$$\mathbb{P}\left(h_{i}^{t}\mathbf{y}^{t} \leq q_{i}^{t}\right) \geq p, \forall i$$
$$\mathbf{u}^{t} \in \mathcal{U}^{t}$$

 Lower-level program : non-convex even for i.i.d Gaussian output noise

One-step SQP approximation: linear closed-form solution

$$g^{t} = \underset{g}{\operatorname{argmin}} \|Y_{p}g - \bar{\mathbf{y}}_{\operatorname{ini}}^{t}\|_{2}^{2} + \lambda \|g\|_{2}^{2}$$
s.t. $\begin{bmatrix} \mathbf{u}_{\operatorname{ini}}^{t} \\ \mathbf{u}^{t} \end{bmatrix} = \begin{bmatrix} U_{p} \\ U_{f} \end{bmatrix} g$
where $\lambda = \left(L' / \|g_{\operatorname{ini}}\|_{2}^{2} + L \right) \sigma^{2}$
Expected output cost $= \|\bar{\mathbf{u}}^{t} - \mathbf{r}^{t}\|^{2} + \lambda \|g^{t}\|$

Expected output cost = $\|\bar{\mathbf{y}}^t - \mathbf{r}^t\|_Q^2 + \lambda_g \|g^t\|_2^2$, $\lambda_g = \sigma^2 \operatorname{tr} \left(Q \left(\Gamma \Gamma^\top + \mathbb{I} \right) \right) \sim \text{regularization term}$

Data-driven predictor in stochastic predictive control

$$\min_{\mathbf{u}^{t}} \quad \left\|\mathbf{u}^{t}\right\|_{R}^{2} + \mathbb{E}\left[\left\|\mathbf{y}^{t} - \mathbf{r}^{t}\right\|_{Q}^{2}\right]$$

s.t.
$$g^t = g_{\text{SMM}}(\mathbf{u}_{\text{ini}}^t, \mathbf{y}_{\text{ini}}^t, \mathbf{u}^t)$$

$$\bar{\mathbf{y}}^t = Y_f g^t - \Gamma(Y_p g^t - \mathbf{y}_{ini}^t)$$

$$\begin{split} \mathbb{P}\left(h_{i}^{t}\mathbf{y}^{t} \leq q_{i}^{t}\right) \geq p, \ \forall \, i \\ \mathbf{u}^{t} \in \mathcal{U}^{t} \end{split}$$

Chance constraint : non-convex, error depends on inputs via $g^t\,$

Lemma: Convex surrogate of chance constraints

Chance constraints are guaranteed by SOC constraints

$$h_{i}^{t} \bar{\mathbf{y}}^{t} \leq q_{i}^{t} - \mu \left(c_{1} + c_{2} \left\| g^{t} \right\|_{2} \right), \quad \forall i = 1$$

where

$$\begin{split} c_1 &= \sqrt{h_i^t \, \Gamma \, \Sigma_{\text{yini}} \Gamma^\top \left(h_i^t\right)^\top} \\ c_2 &= \sigma \sqrt{h_i^t \left(\Gamma \Gamma^\top + \mathbb{I}\right) \left(h_i^t\right)^\top}, \quad \mu = \sqrt{\frac{1}{1-p} - 1} \end{split}$$

Application

Space heating control

- Stochastic disturbance & measurement noise
- Nonlinearity as disturbance

ETH zürich » DITET »

Experiment: 0.025°C·h constraint violation in 4 days

Benchmarking against competing algorithms

High-fidelity simulation: 59% – 90% reduction in constraint violation, 4% – 8% energy saving, smoother control action

ETH zürich

The End.

Mingzhou Yin

myin@control.ee.ethz.ch mingzhouyin@gmail.com

