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Towards low-order structures

• One interpretation of system identification:
Find a low-order description that is close to the collected data

• Low-order description→ rank deficiency in data matrices

• Example 1: impulse response of discrete-time LTI systems

Hg =


g0 g1 · · · gn−1
g1 g2 · · · gn
...

...
. . .

...
gm−1 gm · · · gN−1

 has a rank of the system order nx.

• Applications in frequency-domain subspace identification (McKelvey 1996) and
model order reduction (Markovsky 2005)
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• Example 2: input-output trajectory of discrete-time LTI systems

U =


u0 u1 · · · un−1
u1 u2 · · · un
...

...
. . .

...
um−1 um · · · uN−1

 , Y =


y0 y1 · · · yn−1
y1 y2 · · · yn
...

...
. . .

...
ym−1 ym · · · yN−1


If inputs are persistently excited, rank

([
U
Y

])
= mnu + nx

• Applications in time-domain subspace identification (Moonen 1989) and
data-driven simulation/control (Markovsky 2006)
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The usual way. . .

• Problem: Estimate low-rank data matrix X from noisy measurement
W = X + σZ

• Find the closest low-rank approximation to the noisy data matrix

X̂LRA = argmin
X̂

∥∥∥W − X̂∥∥∥2

F

s.t. rank(X̂) ≤ r.
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• Solution is given by the Eckart-Young-Mirsky (EYM) theorem

Truncated singular value decomposition
Let the singular value decomposition ofW beW =

∑m
i=1wiuivT

i .

X̂TSVD =
r∑
i=1

wiuivT
i .

• Basic idea in principal component analysis / proper orthogonal decomposition
• When r is unknown, estimate r by inspection of scree plot or cross validation
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Introducing Hankel structure

• Data matrices often have structural constraints→ X̂ should also be structured
• Generalized low-rank Hankel structure: X is Hankel, rank(XΠ) = r

• Covers Hankel matrix, Toeplitz matrix & Hankel matrices with noise-free rows
– (Example 1) X = Hg, Π = I, r = nx

– (Example 2, output noise only) X = Y , Π = I− U>(UU>)−1U spans the null
space of U , r = nx

• Structured low-rank approximation (SLRA) problem

X̂SLRA = argmin
X̂∈Hm×n

∥∥∥W − X̂∥∥∥2

F

s.t. rank(X̂Π) ≤ r.

• EYM theorem no longer valid→ no closed-form solution
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Solving the SLRA problem

• Iterative structural approximation (Wang 2019, Li 1997)

Iterative algorithm for SLRA

1: W1 ←W
2: repeat
3: W2 ← X̂TSVD(W1)
4: W1 ← H(W2)
5: until ‖W1 −W2‖ < ε ‖W1‖
6: Output: X̂ = W1

H(·): orthogonal projector onto Hankel
matrix set by averaging skew diagonals

• Nonlinear local optimization (Markovsky 2013)
• Relaxation by nuclear norm regularization (Fazel 2001)

X̂nuc = argmin
X̂∈Hm×n

1
2

∥∥∥W − X̂∥∥∥2

F
+ τ

∥∥∥X̂Π
∥∥∥
∗
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Approximation is NOT denoising

• The true objective is to minimize

MSE(X̂) := E
(∥∥∥X − X̂∥∥∥2

F

)

instead of
∥∥∥W − X̂∥∥∥2

F

• An extreme case: When σ →∞, X̂TSVD →∞ while min-MSE solution is zero
• Problem: Noise matrix also inflates non-zero singular values

lim
n→∞

wi =
{
D−1
µZ

(1/x2
i ), x2

i > 1/DµZ (b+)
b, x2

i ≤ 1/DµZ (b+)

• wi > xi, ∀xi; no hope to recover modes with small s.v.
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Singular value shrinkage

X̂shrink =
m∑
i=1

η(wi)uivT
i +W (In −Π), η(wi) ∈ [0, wi]

• Shrinkage law with minimum asymptotic MSE (Nadakuditi 2014)

η(w;µZ) =

−2DµZ (w)
D′µZ (w) , DµZ (w) < DµZ (b+)

0, DµZ (w) ≥ DµZ (b+)
,

Automatic Control Laboratory July 14, 2021 8/15



• When Z has i.i.d Gaussian entries, µZ has analytical solution
(Marchenko-Pastur distribution)
• Optimal shrinkage law (Gavish 2014)

η(w) =


nσ2

w

√(
w2

nσ2 − β − 1
)2
− 4β, w > (1 +

√
β)
√
nσ

0, w ≤ (1 +
√
β)
√
nσ

.

• Knowledge of r not required
• Noise level σ estimated by comparing last (m− r) s.v. with M-P distribution

σ̂ = wmed√
n · zmed(β)
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Hankel noise structure

• When Z is also Hankel, no analytical solution for µZ
• Data-driven singular value shrinkage algorithm (Nadakuditi 2014)

– Consistent estimate of µZ from last (m− r) s.v.

ηDD(wi) =
{
η(wi; µ̂Z(wr+1, . . . , wm)), i = 1, . . . , r
0, i = r + 1, . . . ,m

.

• Knowledge of r required to distinguish purely noisy s.v.
– Can be replaced by an upper bound of r
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Combining SLRA with optimal shrinkage denoising

Iterative low-rank Hankel matrix denoising

1: Input: W,Π, r, ε.
2: W1 ←W
3: repeat
4: W2 ←

∑r
i=1 η(wi; µ̂Z(wr+1, . . . , wm))uivT

i +W1(In −Π),
5: W1 ← H(W2)
6: until ‖W1 −W2‖ < ε ‖W1‖
7: Output: X̂ = W1.

Automatic Control Laboratory July 14, 2021 11/15



Numerical simulation

• Random fourth-order LTI systems (r = 4)
• Zero-mean i.i.d. Gaussian noise in output measurements

• r and σ2 assumed known if needed
• Performance assessed by noise reduction measure

F = 100 ·

1−

∥∥∥X − X̂∥∥∥
F

‖X −W‖F
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Compared methods

• Truncated singular value decomposition (TSVD)
• Structured low-rank approximation methods

– SLRA by iteration (Iter)
– SLRA by local optimization (SLRA)
– Nuclear norm regularization (Nuc)

• Unstructured matrix denoising methods
– Optimal shrinkage law (Shrink)
– Optimal hard thresholding (Hard)
– Data-driven shrinkage law (DD)

• Iterative low-rank Hankel matrix denoising (LRHD)
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(a) X ∈ R8×33, σ2 = 0.01 (b) X ∈ R8×33, σ2 = 0.001

Figure: Noise reduction performance for impulse response denoising.
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(a) X ∈ R8×89, σ2 = 0.1 (b) X ∈ R8×89, σ2 = 0.01

Figure: Noise reduction performance for input-output trajectory denoising.
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A novel approach to low-rank Hankel matrix denoising

• Denoising is different from approximation
• Hankel structure enforced by data-driven singular value shrinkage & iterative
structural approximation
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