Automatic Control Laboratory

g= =2 e BV

Stochastic Data-Driven Predictive Control:
Regularization, Estimation, and Constraint Tightening

Mingzhou Yin, Andrea lannelli, Roy S. Smith
July 17, 2024, SYSID 2024




The LTI stochastic data-driven predictive control problem

e Data-driven: Input-disturbance-output trajectory in place of model parameters
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e Predictive: L = Ly (init. cond. length) + L’ (prediction horizon)
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e Control: Receding horizon control
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The LTI stochastic data-driven predictive control problem

Stochastic: Two sources of uncertainties

e Zero-mean i.i.d. noise cov (v¢) = azlny — uncertainties in signal matrix Z &
output initial condition y%, : E [yk;] = ¥k, cov (vk) = P
* Uncertainties in online disturbance sequence w' : E [w'] = w’, cov (w') = &,

Agenda:
e Accurate predictor under multiple uncertainties
¢ Tractable formulation of the expected cost
¢ Tractable formulation of output contraints
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The stochastic predictor’

Stochastic data-driven prediction

Consider augmented inputs 1, := col (u¢, w;). The distribution of stochastic output
prediction can be characterized by E [y°| ¢'] = y', cov (3'| ¢*) = X, where

y'=Ypg' = T(Yog" — ¥ini)
2
St =TPIT + WS, Il + Hng2 iy
T := o2 (FFT + |nyL,) , Ty := (Y; —TY,)Rs,

T := col (CAL% o CAH) col (a L CALo—l)T .

1Yin, M., lannelli, A., and Smith, R.S. (2022). Data-driven prediction with stochastic data: Confidence regions
and minimum mean-squared error estimates. In European Control Conference (ECC), 853-858.
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The stochastic predictor

® 4' can be been as a hyperparameter, typically selected by solving

g' = argmin Hng—S’fni gl = {Rl Ry Rs 34} col (uitnn W', ¥in )

s.t. \Ilg—CO|( ul tv‘vt)

e The model parameter I can be estimated consistently by I', = YiRy (Y,,]—'Q)_1
under mild conditions
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Stochastic control cost

Expected control cost

The expected control cost is quadratic with
= oy =y 0 (@) o consa,

where R:= 1y @R, Q := 1y ® Q, r* := (rep) Ll T o= 0 (FFT + 'nyL')'

e The ||¢*|>-regularization term is commonly seen in DDPC literature, but this
result provides a practical approach to selecting the weighting factor
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Initial condition estimation

In standard DDPC, the output initial condition y!.. is directly measured
= constant covariance = measurement error

In MPC, the initial condition z; is estimated from both measurement y; and
previous prediction x,_;
= diminishing error covariance

Idea: Update y!,; with Kalman-filtered measurement from previous prediction

Method: Consider the stochastic predictor as a non-minimal state-space
“model” with “state”

T, e— 0 0
Z: := col (ut_LO, coy U1 Yy - - 7yt—l)
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Initial condition estimation

ETHzirich

A: upper shift operator

el: one-step-ahead prediction error with covariance X},

v;: measurement noise with variance aQIny
Standard Kalman filter design can be done

Automatic Control Laboratory

0 0
_ A 0] |ad 0
et = [ 0 A”y] “ ol T o

W) |
G1 = [0 |ny] Tepr +0r =y +or =y

ut—Lo

Ut—1

0
ytho

0
Yi—1

July 17, 2024

714



Chance constraint satisfaction

Both element-wise chance constraints
Pr(nt* gL < gty >p, Vi=1,... ne,k=0,...,L' -1
and set-wise chance constraints
Pr (Ht“fgg < qu) >p, Vk=0,..., ' —1
can be guaranteed by constraint tightening.

¢ Unlike usual uncertainty assumptions, error depends on inputs via g°
¢ Online calculation of constraint tightening is required
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Chance constraint satisfaction

Constraint tightening

Define augmented linear constraints H'y < ¢*. The constraint

7 — Byt > u\/diag (s a)

(&)

guarantees the satisfaction of 1) element-wise chance constraints if ; > ,/%p -1

and 2) set-wise chance constraints if © > , /1—’1’?.

Proof sketch: 1) uses one-sided Chebyshev’s inequality

Pr(nty' —hiy' < \/t5 —1-std (Al3")) = p, Vis

2) uses multi-dimensional Chebyshev’s inequality

-1 n
Pr(etT »t el < Y )Zp
k ( k) 1—p
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Chance constraint satisfaction

¢ Unfortunately, the tightened constraints are non-convex
¢ Convex surrogate obtained by using /> _; a; < >, \/ai

Convex surrogate of chance constraints

(A) is guaranteed by second-order cone constraint
¢ —H'S" > p(ei+ez g,

where

cL = \/diag (ﬁt (CRTT 4+ TS, T)) BtT>, cy = \/diag (HtTFItT).
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Stochastic indirect DDPC

Select a data-driven predictor and calculate predictor parameters Ry, Ro, R3, R, T2, T.
Initialize the Kalman filter.
fort+ 0,1,... do

Update Kalman filtered initial conditions col (ul,, yi) < @4, P < Piy.

Solve

AR

o' argmin {8 + [ —x*[[§ + tr (QT) [lg']f;
st ¢' = [Rl Ry Rs R4] col (u,m,u w ,ym,),
¥ =Yg = T(Ypg" — Vim);
¢ = H'Y' = p(er+eag']],)
at € Upyn, Ve=0,...,L' —1.

6: Apply u; = 4, to the system and measure y;.
7: end for
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Numerical example

= = =Ref.  —r—-— KF-DDPC =x=s=srere Bounds

e Fourth-order dynamics — — —N-DDPC S-DDPC

e Lo=4,L =10,Q = 20, :
R=1,0%=0.01,p=0.95,
w!=0,%, =0.001-1

e (Gaussian noise and
disturbance

¢ 500 offline data points : - - - . . |

0 5 10 15 20 25 30 35
e Lower and upper output t

bounds N-DDPC: nominal DDPC
e No input constraints KF-DDPC: DDPC with Kalman filtering

S-DDPC: DDPC with KF & constraint tightening
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Numerical example

N-DDPC: nominal DDPC
KF-DDPC: DDPC with Kalman filtering
S-DDPC: DDPC with KF & constraint tightening
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Numerical example
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¢ 50 Monte Carlo simulations N-DDPC: nominal DDPC
¢ Constraint violation KF-DDPC: DDPC with Kalman filtering
=Y, max (H'y, — ¢*,0) S-DDPC: DDPC with KF & constraint tightening
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ETH:irich

Stochastic Data-Driven Predictive Control: Regularization, Estimation, and
Constraint Tightening

® A tuning-free regularizer design in the control cost
* Improved initial condition estimation by Kalman filtering
¢ Reliable constraint satisfaction by constraint tightening



