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Abstract

This thesis delves into regularized and nonparametric approaches in system identification and
data-driven control. Classical model-based control design relies on a compact parametric model
structure, which is difficult to obtain for modern complex systems. To address this challenge,
regularized approaches adopt general high-dimensional model structures and apply sparse learning
and kernel learning theories to identify models by leveraging the sparsity and smoothness
properties of the system, respectively. In sparse learning, atomic norm regularization is employed
to learn the sparse pole locations of the system within the unit disk. A novel algorithm is
presented to solve the associated infinite-dimensional sparse learning problem. Debiasing and
stability selection algorithms are applied to enhance the identification performance as well. In
kernel learning, a multiple kernel design with optimal first-order kernels is proposed to identify
the impulse response of the system. This enforces a low-complexity model structure while
maintaining the favorable bias-variance trade-off property of kernel learning. More reliable error
bounds, associated with the Gaussian process interpretation of kernel learning, are derived when
hyperparameters are unknown, supporting safety-critical applications.

An alternative path to circumvent model structure selection is to construct nonparametric pre-
dictors that predict output trajectories. This can be done by characterizing possible system
behaviors as linear combinations of deterministic trajectory data. Extensions of this approach to
stochastic data are investigated. A novel algorithm is developed to denoise the data by solving
a low-rank Hankel matrix denoising problem. It achieves a more substantial noise reduction
than existing algorithms. A maximum likelihood predictor, dubbed the signal matrix model, is
derived to establish a statistical framework that provides accurate prediction in the presence of
noise without requiring sophisticated tuning. Prediction error quantification associated with the
nominal prediction is also provided. The proposed predictor can be directly applied to receding
horizon predictive control, replacing model-based predictors, with the possibility to incorporate
online data. It demonstrates superior performance compared to existing data-driven predictors.
The algorithm is further extended to the stochastic control framework with initial condition
estimation and guaranteed constraint satisfaction. Its effectiveness in practice is validated through
high-fidelity simulation of a space heating control case study.

Specific identification approaches for periodic systems are also studied. Linear time-periodic
systems are identified by reformulating them into switched systems and extending the atomic
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Abstract

norm regularization approach with grouped variables. In the frequency domain, a novel subspace
identification algorithm is proposed by estimating the time-aliased periodic impulse response
from the frequency response of the lifted system. Periodic models can also be utilized to identify
local limit cycle dynamics. This is accomplished by linearizing the system along the limit cycle
and estimating the periodic dynamics matrix of the linearized system by kernel learning. The
approach is tested on an airborne wind energy system.
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Zusammenfassung

Diese Arbeit befasst sich mit regulierten und nichtparametrischen Ansätzen in der Systemi-
dentifikation und datengesteuerten Steuerung. Klassisches, modellbasiertes Steuerungsdesign
stützt sich auf eine kompakte parametrische Modellstruktur, die jedoch für moderne komplexe
Systeme schwer zu erhalten ist. Um diese Herausforderung zu bewältigen, adoptieren regulierte
Ansätze allgemeine hochdimensionale Modellstrukturen und wenden sparsames Lernen und
Kernel-Lernen an, um Modelle zu identifizieren, indem sie die Sparsamkeit und Glätteeigen-
schaften des Systems nutzen. Beim sparsamen Lernen wird die atomare Normregularisierung
verwendet, um die spärlichen Polpositionen des Systems innerhalb der Einheitsdisk zu lernen. Ein
neuartiger Algorithmus wird präsentiert, um das damit verbundene unendlich-dimensionale spar-
same Lernproblem zu lösen. Entzerrungs- und Stabilitätsauswahlalgorithmen werden ebenfalls
angewandt, um die Identifikationsleistung zu verbessern. Im Kernel-Lernen wird ein multiples
Kernel-Design mit optimalen erststufigen Kernels vorgeschlagen, um die Impulsantwort des
Systems zu identifizieren. Dies erzwingt eine niedrigkomplexe Modellstruktur und behält dabei
die günstige Eigenschaft des Bias-Varianz-Ausgleichs des Kernel-Lernens bei. Zuverlässige-
re Fehlergrenzen, die mit der Gaußschen Prozessinterpretation des Kernel-Lernens verbunden
sind, werden abgeleitet, wenn die Hyperparameter unbekannt sind, was sicherheitskritische
Anwendungen unterstützt.

Ein alternativer Weg, die Auswahl der Modellstruktur zu umgehen, besteht darin, nichtparametri-
sche Prädiktoren zu konstruieren, die Ausgabetrajektorien vorhersagen. Dies kann geschehen,
indem mögliche Systemverhaltensweisen als lineare Kombinationen von deterministischen Tra-
jektoriendaten charakterisiert werden. Erweiterungen dieses Ansatzes für stochastische Daten
werden untersucht. Ein neuartiger Algorithmus wird entwickelt, um die Daten durch Lösen
eines Rangminderungsproblems der Hankel-Matrix zu entrauschen. Dies erreicht eine wesentlich
stärkere Geräuschreduzierung als bestehende Algorithmen. Ein Maximum-Likelihood-Prädiktor,
genannt das Signal-Matrix-Modell, wird abgeleitet, um einen statistischen Rahmen zu schaf-
fen, der genaue Vorhersagen in Gegenwart von Lärm ohne ausgefeilte Abstimmung ermöglicht.
Eine Quantifizierung des Vorhersagefehlers in Verbindung mit der nominalen Vorhersage wird
ebenfalls bereitgestellt. Der vorgeschlagene Prädiktor kann direkt auf die rückwärtige Horizont-
Vorhersagesteuerung angewendet werden und ersetzt modellbasierte Prädiktoren mit der Möglich-
keit, Online-Daten einzubeziehen. Er zeigt eine überlegene Leistung im Vergleich zu bestehenden
datengesteuerten Prädiktoren. Der Algorithmus wird weiter auf das stochastische Steuerungsfra-
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Zusammenfassung

mework mit anfänglicher Zustandsschätzung und garantiertem Restriktionserfüllung ausgedehnt.
Seine Wirksamkeit in der Praxis wird durch hochtreue Simulation eines Raumheizungssteuerung-
Fallbeispiels validiert.

Spezifische Identifikationsansätze für periodische Systeme werden ebenfalls untersucht. Lineare
zeitperiodische Systeme werden identifiziert, indem sie in geschaltete Systeme umformuliert und
der atomaren Normregularisierungsansatz mit gruppierten Variablen erweitert wird. Im Frequenz-
bereich wird ein neuartiger Subraum-Identifikationsalgorithmus vorgeschlagen, indem die zeitlich
verzerrte periodische Impulsantwort aus der Frequenzantwort des gehobenen Systems geschätzt
wird. Periodische Modelle können auch genutzt werden, um lokale Grenzzyklusdynamiken zu
identifizieren. Dies wird erreicht, indem das System entlang des Grenzzyklus linearisiert und die
periodische Dynamikmatrix des linearisierten Systems durch Kernel-Lernen geschätzt wird. Der
Ansatz wird an einem luftgebundenen Windenergiesystem getestet.
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DCP difference of convex programming
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Nomenclature

#[·] the number of elements in a set

col(x1, . . . ,xn) row-wise concatenation [x⊤1 . . . x⊤n ]⊤

ℑ(·) the imaginary part of a complex number

⌊·⌋ the floor function

C the set of complex numbers

Cn the n-dimensional complex space

E(·) the expected value

I the identity matrix

P(·) the probability of a random event

R the set of real numbers

Rn the n-dimensional Euclidean space

R+ the set of non-negative real numbers

R++ the set of positive real numbers

Sn
++ the set of n-by-n positive definite matrices

Sn
+ the set of n-by-n positive semi-definite matrices

Z the set of integers

Z+ the set of non-negative integers

0 a vector of zeros

1 a vector of ones

∥·∥∗ the nuclear norm of a matrix

∥·∥F the Frobenius norm of a matrix

∥x∥P the weighted l2-norm
(
x⊤Px

) 1
2

⊗ the Kronecker product
p
≤ less than or equal to with probability p

∂ f the subdifferential of f

N (µ,σ2) Gaussian distribution with a mean of µ and a variance of σ2

ℜ(·) the real part of a complex number
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Nomenclature

ρ(·) the spectral radius of a matrix

blkdiag(·) diagonal-wise concatenation of matrices

cov(·) the covariance

diag(·) the vector of diagonal elements of a square matrix

range(·) the range (column space) of a matrix

rank(·) the rank of a matrix
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std(·) the standard deviation

tr(·) the trace of a matrix

vec(·) the vectorization operator by stacking columns into one vector

0 a matrix of zeros
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AH the Hermitian (conjugate transpose) of matrix A

A⊤ the transpose of matrix A

f (x) = O(g(x)) there exists M > 0, x0, such that | f (x)| ≤Mg(x) for all x≥ x0

j the imaginary unit

X† the Moore-Penrose pseudoinverse of X
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1 Introduction

Automatic control is a ubiquitous technology supporting the intelligent and autonomous operation
of various dynamical systems. It provides autonomous algorithms to achieve desired performance
objectives by manipulating controllable inputs to the system based on knowledge and measure-
ments of the system. Traditionally, such knowledge is encoded in a compact mathematical form
known as a model that describes the system’s behaviors. Various control design approaches
have been proposed, analyzed, and applied under the premise that such a model is accessible for
predicting the responses of the system.

1.1 The Paradigm of System Identification

The step of estimating a model of a dynamical system from observed data is known as system
identification. A classical system identification procedure includes the following four steps.

1. Data collection: Trajectories of the system inputs and responses are recorded. Such
trajectories can come from specifically designed identification experiments or historical
data by running the actual system or a high-fidelity simulation model. Such data are known
as identification data.

2. Selection of model structure: For small-scale physical systems, parametric models can
often be obtained from first principles with a small number of parameters to be identified.
Such models are known as “grey-box” models. For more complex systems, first-principle
models may not be available. In this case, general low-dimensional model structures,
known as “black-box” models, are used. Parameters in model structure selections are
known as hyperparameters.

3. Determining the “best” model: The “best” model is often selected to minimize the differ-
ence between collected and predicted system responses. This is often set up as regression
problems.

4. Model validation: The best hyperparameters are selected by testing models on new system
trajectory data collected independently of the identification data or using information
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Figure 1.1: Paradigm of system identification.

criteria.

After identifying a model, control design is often conducted by assuming that the model fully
captures the true system behaviors. This assumption is known as the certainty equivalence
principle. Alternatively, an uncertainty model can be identified, which describes how the true
system behaviors can differ from those predicted by the identified model. Control design
approaches considering such uncertainties are known as robust or stochastic control.

In this way, the control design problem is split into two distinctive steps via mathematical
abstraction using models, namely system identification and model-based control design. Such
approaches are known as the paradigm of system identification and are summarized in Figure 1.1.
In recent years, this framework of using data in control design is also known as indirect data-driven
control (Dörfler et al., 2023).

Classical algorithms in system identification approach the problem in a parameter estimation
framework, where a finite-dimensional parametrization models the system. Tools in classical
statistics can then estimate the optimal model parameters. One well-known approach in this
category is the prediction error method (PEM) based on maximum likelihood estimation (MLE)
(Åström, 1980). Despite some numerical difficulties, this framework has succeeded in various
applications (Ljung, 1999). However, an essential requirement for this framework to function is
that suitable model structure and effective model complexity selection are available.

1.2 System Identification as Learning Problem

One insight that has been widely leveraged in recent studies of system identification is that it
shares many similarities with supervised learning, despite that different terminology is used, e.g.,
training vs. identification, algorithm vs. estimator, and overfitting vs. bias-variance trade-off.

One main paradigm shift resulting from the learning perspective of system identification is
the use of nonparametric and high-dimensional statistics in system identification. Let n be the
number of parameters in the model, and N be the number of data points. Classical identification
methods work in the regime where n≪ N, whereas modern approaches tend to work with higher
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1.2 System Identification as Learning Problem

Table 1.1: Paradigm shift in system identification.

Method Parameter estimation Kernel learning Sparse learning
Theory Classical stat. Nonparametric stat. High-dimensional stat.
Regime n≪ N n≈ N n≫ N

Prior info. Low dimension Smoothness Sparsity

Tool MLE RKHS, GP
Lasso, compressive

sensing

Algorithm PEM
Kernel-based
identification

Atomic norm
regularization

Problem Model structure selection Complexity measure Bias, false positives

dimensions. When a nonparametric model (n≈ N) is used, kernel learning can be applied using
tools including reproducing kernel Hilbert space (RKHS) and Gaussian process (GP). When an
over-parametrized model (n≫ N) is used, sparse learning comes into use with the help of the
least absolute shrinkage and selection operator (lasso) and compressive sensing techniques. The
characteristics of the methods are summarized in Table 1.1.

This paradigm shift arises timely as more complex and large-scale systems have emerged recently.
The problem of model structure and complexity selection in classical system identification
becomes more and more challenging as low-dimensional model structures become less accessible.
On the other hand, increasing computational capability makes it possible to work directly with
nonparametric and over-parametrized models in model-based control design.

The above backgrounds have led to a surge in learning-based identification methods in recent
years. The critical idea in such ways is the introduction of regularization (Ljung et al., 2019;
Pillonetto et al., 2016). Instead of just looking for the best adherence to identification data,
regularized system identification solves a bi-objective problem, which minimizes a combination
of a loss function measuring data fitting and a regularizer encoding prior model knowledge in
system theory, such as stability, model complexity, frequency domain information (Pillonetto
et al., 2014; Chen, 2018; Marconato et al., 2016; Shah et al., 2012; Khosravi, 2021). In this way,
prior knowledge is integrated in the regularizer instead of in the model structure as in classical
system identification. This significantly improves the estimation quality of high-dimensional
models, which would otherwise lead to overfitting.

In Part I of the thesis, we focus on atomic norm regularization algorithms based on sparse learning
and kernel-based identification based on kernel learning in Chapter 2 and Chapter 3, respectively.

1.2.1 Atomic Norm Regularization

Atomic norm regularization in system identification focuses on simultaneous model order control
and model fitting without prior model order selection. It models the system as a summation
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of “atoms", which are some predefined basis models. The number of atoms is typically much
larger than the data length N, leading to the high-dimensional statistics regime. Still, only a
sparse selection of them is active in the model. The model complexity can then be controlled by
regularizing the l1-norm of the coefficients. This is known as regularizing the atomic norm with
respect to the atomic decomposition (Shah et al., 2012). When first-order atoms are selected, this
results in a lasso-type problem that promotes models with a small number of poles (Yuan and
Lin, 2006). Another advantage of the first-order atomic decomposition is that it directly identifies
the pole locations of the system, rather than polynomial coefficients as in conventional models
such as autoregressive with extra input (ARX) models. Pole locations are essential in classical
control design yet hard to estimate with conventional identification approaches.

However, existing work on the atomic norm regularization approach has multiple known draw-
backs. First, instead of solving the group lasso problem on an infinite set of stable atoms, only a
finite discretization of the atomic set is considered for tractability. This leads to an approximation
error, which can only be reduced with an extensive collection of atoms (Shah et al., 2012). In
addition, a significant bias is induced by lasso-type regularization (Pillonetto et al., 2016), and the
pole location estimation contains a possibly large number of false positives due to the “p-value
lottery" in high-dimensional regression (Meinshausen et al., 2009).

In Chapter 2, an infinite-dimensional sparse learning algorithm is addressed to tackle the above
drawbacks. This algorithm directly targets the group lasso problem with an infinite feature set,
which has been studied in the machine learning literature (Rakotomamonjy et al., 2012; Rosset
et al., 2007; Yen et al., 2014). Two strategies based on iteratively reweighted adaptive group lasso
(Wang and Leng, 2008; Gasso et al., 2009) and complementary pairs stability selection (CPSS)
(Bühlmann and van de Geer, 2011; Shah and Samworth, 2013) are further presented to debias the
estimate and reject false positives, respectively.

1.2.2 Kernel-Based Identification

Following the seminal work in Pillonetto and De Nicolao (2010), kernel-based identification
(Pillonetto et al., 2014; Chiuso and Pillonetto, 2019; Ljung et al., 2019; Pillonetto et al., 2022) has
received significant attention. In its basic form, a truncated impulse response model is identified
with a weighted ridge regularization term. The kernel-based method can be interpreted as function
learning in an RKHS, GP regression, or ridge regression with basis expansions.

The performance of this approach depends heavily on the choice of kernels, which need to
be carefully designed. A class of kernel structures, such as stable spline (SS) kernels, has
been proposed for system identification, which leverages, among others, the prior knowledge
of stability and low complexity in system theory (Chen, 2018). This kernel design step poses
problems similar to model structure selection in the classical paradigm, where the parameters
in the kernel structures are the hyperparameters. Several approaches have been proposed in
the literature to estimate the hyperparameters, such as the empirical Bayes method (Pillonetto
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et al., 2014) and generalized cross-validation (Mu et al., 2018a,b). This process is known
as hyperparameter tuning. When properly tuned, kernel-based identification can obtain more
accurate nominal estimates compared to classical approaches (Pillonetto et al., 2022).

Kernel-based identification controls model complexity through the norm of the impulse response
induced by an arbitrary RKHS (Chen et al., 2012). Such complexity measures need clear
interpretations in classical system theory in general. In the first part of Chapter 3, a new
kernel structure is introduced, which controls the number of poles in the model similar to the
atomic norm regularization. This kernel structure uses multiple regularization, parametrizing the
kernel in terms of basis regularization matrices with a simple design. By choosing the optimal
regularization matrix for first-order systems as bases, the number of poles is bounded by the
cardinality of the hyperparameters. This imposes the low-complexity feature on the identified
model while maintaining the advantage of Bayesian regularization in terms of a favorable bias-
variance trade-off, compared to, for example, l1-norm regularization (Chen et al., 2014; Pillonetto
et al., 2016).

The GP interpretation provides the kernel-based method with another advantage: it obtains
Gaussian stochastic models and thus high-probability error bounds simultaneously with the
nominal model (Chen et al., 2012). This enables its application in robust and stochastic control.

However, one often neglected aspect of kernel-based identification is that the results, including
the error bounds, are conditioned on correct hyperparameter selection, in the same way as PEM is
conditioned on the correct model structure. The hyperparameters are usually selected separately
and used in identification empirically with certainty equivalence. This makes the GP-based error
bounds unreliable when the estimated hyperparameters are inaccurate and thus detrimental to use
in safety-critical applications. This phenomenon has been observed in machine learning literature
(Rasmussen and Williams, 2006).

The second part of Chapter 3 demonstrates that the error bounds derived from estimated hyperpa-
rameters can be inaccurate in linear system identification, especially for lightly damped systems
and in low signal-to-noise ratio (SNR) scenarios. Then, probabilistic error bounds are provided
for kernel-based linear system identification without prior knowledge of the hyperparameters.
This is done by deriving a high-probability set for the true hyperparameters and constructing
error bounds for the worst case within the set.

1.3 From System Identification to Data-Driven Control

The paradigm of system identification has been successful in numerous control applications,
enabling the design of simple but effective feedback control laws. However, the system identi-
fication step can take much work in practice. In particular, a low-dimensional model structure
suitable for designing compact, closed-form control strategies can be complicated to obtain for
complex systems. It constitutes the majority of the budget in model-based control design, in terms
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Figure 1.2: Paradigm of data-driven control.

of both time and cost (Hjalmarsson, 2005). This problem has become more prominent in recent
years as the scale and complexity of the systems are increasing drastically. In addition, it becomes
less clear if low-dimensional descriptions are always helpful for large-scale intelligent systems.
Evidence has shown that low dimensionality is not required in modern optimization-based control
frameworks and may limit the predictive power of big data (Sutton, 2019). Control design
for such systems relies more on collecting abundant data rather than selecting suitable model
structures and/or prior model knowledge. On the other hand, following its remarkable success in
artificial intelligence, learning from data using pure black-box approaches in machine learning,
such as neural networks, is becoming a popular topic in various engineering domains (Hou and
Wang, 2013).

Therefore, with the availability of a massive amount of data and the advancement in computational
capability, the idea of data-driven control has drawn significant attention. Early attempts in this
direction include unfalsified control (Safonov and Tung-Ching Tsao, 1997), iterative feedback
tuning (Hjalmarsson et al., 1998), and virtual reference feedback tuning (Campi et al., 2002).
Reinforcement learning techniques are also widely applied in this area, including policy search
(Lagoudakis and Parr, 2003) and approximate dynamic programming (Powell, 2007). However,
it has been observed in Recht (2019) that these approaches tend to perform much less data-
efficiently in simple tasks than model-based methods. Such approaches typically avoid predicting
the behavior of systems explicitly but aim at the control strategy directly.

In this thesis, the prediction of system behaviors is still desired, but a data-driven predictor
replaces the conventional parametric model. Although the paradigm of system identification can
also be seen as providing indirect data-driven prediction through models, modern data-driven
prediction approaches propose to skip the step of finding a low-dimensional parametrization of
the system behaviors and use data directly to predict future system responses via a potentially
implicit input-output mapping (van Waarde et al., 2020; Markovsky and Dörfler, 2021). In
other words, the whole dataset now serves as an over-parametrized model to provide predictions
for control design. This scheme is illustrated in Figure 1.2. This strategy lies in between the
model-based and the so-called model-free approaches.

In this regard, a seminal result, known as the Willems’ fundamental lemma (WFL) (Willems
et al., 2005), shows that data-driven prediction can be conducted by linearly combining historical
trajectories with sufficiently informative data for linear systems. A more general version of
the lemma was recently given in Markovsky and Dörfler (2023). The matrix that collects the
historical trajectories is dubbed the signal matrix. With this result, possible trajectories of the
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system can be characterized by selecting a suitable combination of collected trajectories that
satisfies the initial condition constraints (Markovsky and Rapisarda, 2008; De Persis and Tesi,
2020; van Waarde et al., 2020). Such characterization thus acts as a surrogate for conventional
models to describe possible system trajectories. This implicit representation of the system has
been successfully applied to simulation and control problems with noise-free data in Markovsky
and Rapisarda (2008); Coulson et al. (2019); De Persis and Tesi (2020).

In Part II of the thesis, the extension of such data-driven trajectory predictors to stochastic data is
studied in Chapter 4, whereas its application to receding horizon predictive control is discussed
in Chapter 5.

1.3.1 Stochastic Data-Driven Trajectory Prediction

It is well-known that when data are noisy, over-parametrized models may lead to high variances
and overfitting (Geman et al., 1992). In this case, finding a linear combination of collected
trajectories that give reliable prediction is an ill-defined problem for datasets with stochastic
noise. This issue has become the central question in data-driven approaches based on the WFL
(van Waarde et al., 2022).

Two directions have been pursued in the literature to tackle the data-driven prediction problem
with stochastic data. The first direction proposes to recover the low-rank structure in the noise-
free data matrix which guarantees the well-definedness of the predictor. In other words, the
stochastic trajectory prediction problem is converted to a low-rank matrix denoising problem.
This approach has a close connection with the subspace identification approach. In fact, with a
low-rank approximation, it directly leads to the intersection algorithm in subspace identification
where state-space models can be derived (Moonen et al., 1989).

In the first part of Chapter 4, the low-rank matrix denoising problem with a generalized Hankel
structure is investigated, where the underlying low-rank matrix is assumed to be a transformed
Hankel matrix. This structure is commonly used in constructing the signal matrix. By enforcing
structural constraints and avoiding approximating the noise matrix, a novel matrix denoising
algorithm, which performs better than existing algorithms in terms of noise reduction, is proposed.

The second direction uses regularizers to penalize unreliable predictions, either at the predictor
or control design levels. In particular, empirical regularizers (Berberich et al., 2021; Coulson
et al., 2019; Dörfler et al., 2023; Lian et al., 2023) or least-norm problems, known as the data-
driven subspace predictor (Favoreel et al., 1999; Huang et al., 2019; Sedghizadeh and Beheshti,
2018), have been introduced to provide reasonable predictions. Yet, the optimal design of the
predictor needs to be clarified. In addition, the hyperparameters in the empirical regularizers are
challenging to tune (Huang et al., 2019). The performance is often assessed with an oracle of the
optimal regularization parameters by trial and error, which is unrealistic in practical applications.

In the second part of Chapter 4, an extension of the WFL to stochastic data is presented using
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MLE from a system identification point of view. The derived data-driven input-output mapping
dubbed the signal matrix model (SMM), provides a statistical approach to construct the stochastic
data-driven predictor without sophisticated tuning. The SMM predictor can be directly used
to simulate the system response (Markovsky et al., 2005b; Carapia et al., 2020). The main
advantage of applying this approach is that it gives correct estimates in the noise-free case without
transient or truncation errors. This is a much-desired property yet fails to be satisfied by many
classical system identification methods, including least-squares regression (Chen et al., 2012)
and empirical transfer function estimation (ETFE) (Ljung, 1999).

In addition to the nominal prediction, a reliable uncertainty model of the prediction is essential to
robust or stochastic control design for safety-critical applications. This is, however, challenging
to obtain due to the over-parametrized and implicit predictor structure with uncertainties on both
the historical trajectories and the prediction conditions. In the third part of Chapter 4, a statistical
framework is established to assess the prediction accuracy by providing confidence regions for a
general form of stochastic data-driven predictors.

1.3.2 Data-Driven Predictive Control

The data-driven predictor based on the WFL is especially suitable for optimal trajectory tracking.
In this regard, model predictive control (MPC) is very effective when an accurate system model
is available (Kouvaritakis and Cannon, 2016). The output predictor using an explicit parametric
model in MPC can be replaced by the nonparametric data-driven predictor discussed above. This
data-driven alternative to MPC algorithms, known as data-driven predictive control (DDPC), has
led to multiple successful algorithms, including subspace predictive control (SPC) (Favoreel
et al., 1999; Kadali et al., 2003; Hallouzi and Verhaegen, 2008; Sedghizadeh and Beheshti, 2018),
data-enabled predictive control (DeePC) (Huang et al., 2019; Coulson et al., 2019; Coulson et al.,
2022; Alpago et al., 2020), and behavioral input-output parametrization (Furieri et al., 2021) with
stability and robustness proofs given in Berberich et al. (2021). Successful applications have
been found in different fields, including power systems (Huang et al., 2021; Huang et al., 2019),
quadrotors (Elokda et al., 2021), and building control (Lian et al., 2023).

Chapter 5 focuses on the application of the SMM to DDPC algorithms. The main advantage
of using SMM is that it avoids the difficult hyperparameter tuning problem in existing DDPC
algorithms while obtaining a better performance numerically. With the prediction error quantifi-
cation in Chapter 4, a stochastic version of the SMM-based DDPC algorithm is proposed with
the following novelties: 1) initial condition estimation by Kalman filtering, 2) chance constraint
satisfaction by constraint tightening, and 3) regularization based on the stochastic cost. Finally,
high-fidelity simulation results are presented in a space heating control example.
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Figure 1.3: Relations between periodic systems and other types of systems.

1.4 Periodic Systems

In addition to linear time-invariant (LTI) systems considered in the first two parts of the thesis, we
are also interested in identifying periodic systems from input-output data. Periodicity in dynamics,
scheduling parameters, and operating trajectories is often observed in various applications,
including rotating machinery (Allen et al., 2011), aerospace (Shin et al., 2005; Wood et al., 2018),
power systems (Möllerstedt and Bernhardsson, 2000), building control (Khosravi et al., 2017),
and process control (Budman and Silveston, 2013). More importantly, periodic models serve as
an intermediate step to capture more general representations than LTI systems, such as linear
time-varying (LTV) systems (Liu, 1997), linear parameter-varying (LPV) systems (Felici et al.,
2007; Goos and Pintelon, 2014; Cox, 2018) and nonlinear systems along limit cycles (Allen and
Sracic, 2009). The relations between periodic systems and other types of systems are illustrated
in Figure 1.3.

In Chapter 6, two approaches are proposed to identify linear time-periodic (LTP) systems using
the regularized method in the time domain and the subspace method in the frequency domain,
respectively. LTP systems are systems with periodically time-varying linear dynamics. In
general, any identification scheme for LTI systems applies to LTP systems by application of
the lifting technique (Bittanti and Colaneri, 2000). However, such methods often fail to encode
characteristics of the lifted system, such as the causality constraint that prevents future inputs in
a period from affecting previous outputs. The identified lifted system is thus not guaranteed to
be realizable to its LTP form. As pointed out in Bittanti and Colaneri (2000), the critical issue
in LTP system identification is that the parameters in the reformulated LTI models have strong
correlations since they come from the same dynamic system. This correlation is not investigated
in existing LTI-based identification frameworks.

As discussed in Section 1.2, regularized methods have recently reported positive results in linear

9



Chapter 1. Introduction

system identification. For LTI reformulations of LTP systems in particular, this framework
enables us to treat the structural constraints using parameter regularization. The first part of
Chapter 6 extends the atomic norm regularization approach to LTP systems by using a group
lasso regularizer to impose the additional structural constraints needed for periodic models. This
approach estimates uniform low-order models for LTP systems.

The second part of Chapter 6 focuses on identifying state-space models of LTP systems. Most
existing methods for this problem are time-domain subspace identification methods (Verhaegen
and Yu, 1995), which extend naturally from its LTI counterpart (Overschee and Moor, 1996).
This method, along with a similar version in Hench (1995), has contributed to several successful
applications (e.g., Felici et al. (2007); Sefidmazgi et al. (2016)), especially in identifying LPV
systems where modern subspace techniques have been incorporated (Cox, 2018). On the other
hand, the frequency-domain subspace formulation for LTP systems has not been well-investigated.

Frequency domain methods in system identification are particularly suitable when periodic inputs
are used in identification experiments. As discussed in Schoukens et al. (1994), periodic input
design has several advantages compared to random input design, including avoiding initial state
estimation and easier time-domain averaging. However, the frequency response behavior of
LTP systems differs significantly from that of LTI systems (Wereley, 1990). Most prominently,
the independence of the frequency response at different frequencies, a property fundamental to
frequency-domain identification of LTI systems, does not hold for LTP systems. This prevents
straightforwardly applying LTI techniques to frequency-domain identification of LTP systems.
Instead, in this thesis, a novel frequency-domain subspace identification method for multiple-input
multiple-output (MIMO) LTP systems is proposed by first estimating the frequency response of
the time-lifted system with LTI structure. Then, the periodic impulse response of the original
LTP system is recovered where an extension to the LTI frequency domain subspace method can
be applied.

In Chapter 7, linear periodic models are adopted to identify nonlinear limit cycle dynamics. Limit
cycles for nonlinear dynamical systems are periodic equilibrium orbits that, if locally stable, are
local attractors and thus lead to self-sustained periodic oscillations (Strogatz, 1994). When a
system is controlled along a periodic reference, the closed-loop dynamics can also be considered
a limit cycle. In this regard, it is of interest to identify a model that describes the limit cycle
dynamics for simulation, analysis, and iterative control design of the closed-loop system.

Identifying nonlinear systems purely from data poses a complex problem, requiring prior knowl-
edge of the model structure and/or complex nonlinear optimization schemes with tractability
issues (Schoukens and Ljung, 2019). Instead, local linear dynamics are often identified for
different operating points to construct an LPV model with gain scheduling applied in control
design (Tóth, 2010). The local dynamics close to the limit cycles are often of primary concern
for limit cycles. However, conventional LPV methods do not consider that the underlying model
converges to a limit cycle.

10
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In this thesis, an alternative approach that identifies the nonlinear dynamics around the limit
cycle as a linear periodically parameter-varying (LPPV) model is investigated. This approach
decomposes the dynamics into two parts: one moving along the limit cycle and one lying on
the transversal hyperplanes of the limit cycle, known as Poincaré sections. These two parts can
both be modeled as locally linearized LPPV models. The linearized transverse dynamics reduce
the nonlinear identification problem to learning the periodic system matrices as functions of the
location on the limit cycle. This function learning problem is tackled using kernel methods in an
LPV system identification framework (Bachnas et al., 2014) with periodic kernel design. The
algorithm is applied to a simplified kinematic model of a tethered kite for airborne wind energy
generation (Ahrens et al., 2013).

1.5 Main Problem Formulation

Unless otherwise specified, in the first two parts of the thesis, we consider a causal and stable LTI
single-input single-output (SISO) discrete-time system. It can be written in the transfer function
form

yt = G0(q)ut + vt , (1.1)

the state-space form {
xt+1 = Axt +But ,

yt = Cxt +Dut + vt ,
(1.2)

or the infinite impulse response (IIR) form

yt =
∞

∑
l=0

glut−l + vt , G0(q) =
∞

∑
l=0

glq−l, (1.3)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , vt ∈ Rny are the states, inputs, outputs, and output noise
respectively, q is the forward time-shift operator, and gl is the impulse response of the system.
The additive noise is assumed to be zero-mean independent and identically distributed (i.i.d.)
Gaussian with a variance of σ2, i.e., vt ∼N (0,σ2I). The system is assumed to be observable
with observability index (lag) l. The noise-free output is denoted by yt,0.

An input-output sequence of the system

ud :=
[
ud

1 ud
2 . . . ud

N

]⊤
, yd :=

[
yd

1 yd
2 . . . yd

N

]⊤
(1.4)

has been collected, where the superscript d denotes data.

In Part I, we are interested in identifying the model G0(q) from the data sequence (ud ,yd) using
regularized system identification techniques.

In regularized system identification, the transfer function G0(q) is expressed with a general
high-dimensional parametrization G0(q) = ∑k∈K ckAk(q), where Ak(q) are the basis transfer
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functions, ck are the corresponding coefficients, and K denotes the set of indices. Denote the set
of coefficients as C := {ck|k ∈K}.

In Chapter 2, we consider stable first-order atoms (Shah et al., 2012)

Ak(q) :=
1−|k|2

q− k
, ck ∈ C (1.5)

and a static atom A1(q) := 1 to accommodate non-zero feedthrough terms. The coefficient set
is given by K = {k = α exp( jβ ) |α ∈ [0,1),β ∈ [0,2π)}∪ {1}. This selection of atoms also
guarantees the stability of the estimated system. The atoms Ak(q) are normalized to have a
Hankel nuclear norm of 1.

In Chapter 3, we consider the impulse response model, i.e.,

Ak(q) := q−k, ck ∈ R, K = Z+. (1.6)

The following regularized optimization problem is solved:

min
C
L
(

yd−∑
k∈K

ck φ

(
Ak(q),ud

))
+λR (C) , (1.7)

where φ
(
A(q),ud

)
denotes the length-N output response of the system A(q) to the inputs ud ,

L(·) is the loss function that penalizes the output residuals,R(·) is the regularizer that encodes
prior knowledge of the coefficients, and λ is the regularization parameter to tune the amount of
regularization. In this thesis, the loss function is selected as L(x) := ∥x∥2

2, which is related to
MLE when the noise vt is zero-mean i.i.d. Gaussian.

The accuracy of the estimated model can be assessed by evaluating the fitting of the estimated
impulse response to the true impulse response within a length of ng, defined as

W := 100 ·

1−

[
∑

ng−1
l=0 (gl− ĝl)

2

∑
ng−1
l=0 (gl− ḡ)2

]1/2
 , (1.8)

where ĝl are the estimated impulse responses, and ḡ is the mean of (gl)
ng−1
l=0 . This measure is

equivalent to the compare function in MATLAB.

In Part II, instead of obtaining the model explicitly, we focus on obtaining a nonparametric
input-output mapping for predicting system responses directly from data sequences (ud ,yd).
In detail, we are interested in predicting the length-L′ output trajectory y := col(y0, . . . ,yL′−1)

from any given input trajectory u := col(u0, . . . ,uL′−1) using only (ud ,yd). To obtain a unique
output trajectory, the initial condition is also fixed by measuring the length-L0 immediate past
input-output trajectory uini := col(u−L0 , . . . ,u−1) and yini := col(y−L0 , . . . ,y−1), where L0 ≥ l.
This guarantees the uniqueness of the initial condition due to the definition of the observability
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index. In other words, a nonparametric data-driven predictor is desired by obtaining the following
input-output mapping:

y = F(ud ,yd)(u;uini,yini). (1.9)

This input-output mapping is used to design a data-driven optimal trajectory tracking controller
in Chapter 5. It aims to track a reference trajectory r in the sense of minimizing the total control
cost:

Jtot :=
Nc−1

∑
t=0

Jt :=
Nc−1

∑
t=0

(
∥ut∥2

R +∥yt,0− rt∥2
Q

)
, (1.10)

where Jt is the stage cost at time t, R,Q are the input and the output cost matrices, respectively,
and Nc is the length of the control task.
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2 Sparse Learning in System Identifica-
tion

In this chapter, we first revisit the fundamental theories of sparse learning in high-dimensional
statistics in Section 2.1. After introducing the basic lasso and group lasso problems, iteratively
reweighted adaptive approaches (Wang and Leng, 2008; Gasso et al., 2009) are discussed to reduce
the amount of regularization on significant features, thus reducing the bias. Complementary
pairs stability selection (CPSS) (Bühlmann and van de Geer, 2011; Shah and Samworth, 2013)
is discussed to estimate the active set stably by solving the lasso-type problem repeatedly on
subsamples of the identification data and selecting features that are consistently active.

These methods are applied to the atomic norm regularization in linear system identification
in Section 2.2. An infinite-dimensional group lasso problem is formulated using first-order
atoms. A tractable algorithm to solve the infinite-dimensional problem is presented. It first
solves the problem with a small number of randomly generated features. Then, by inspecting the
optimality conditions of the finite-dimensional problem, a new atomic model feature is selected
to maximize the optimality condition violation for the previous iteration. This greedy iteration
repeats until no new features can be added. The algorithm guarantees a decrease in the objective
value per iteration and solves the infinite-dimensional problem with an arbitrarily small tolerance.
The group lasso estimate is further debiased by iterative reweighing, and reliable pole location
estimation is obtained by CPSS.

Numerical results demonstrate that the proposed algorithm performs better than PEM with
an ARX model, kernel-based identification with tuned/correlated (TC) kernel design, and the
existing atomic norm regularization algorithm in terms of impulse response fitting on a benchmark
system. In addition, adaptive group lasso can reduce the algorithm’s bias, and CPSS obtains more
accurate pole location estimation than PEM with fewer false positives.

2.1 High-Dimensional Regression

Consider linear regression problem
y = Xc0 + e, (2.1)
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where y ∈ RN , X ∈ RN×n, e ∈ RN are the regressand, regressor, and noise respectively and
c0 ∈ Rn is the true parameter to be estimated.

High-dimensional regression refers to regression problems where n≫ N. In general, this leads to
underdetermined, ill-defined problems. To make the problem well-defined, we restrict it to sparse
problems. Define

S(c0) :=
{

j
∣∣c0

j ̸= 0
}
, #

[
S(c0)

]
:= p(c0), (2.2)

where S(c0) and p(c0) are known as the active set and the cardinality of c0, respectively. The
parameter c0 is considered sparse if p(c0)≪ N. Sparse learning techniques can be applied to
high-dimensional regression problems under this assumption.

2.1.1 Lasso and Group Lasso

Suppose the true parameter cardinality p(c0) is known. It is natural to formulate the sparse
learning problem as a constrained least-squares problem

min
c
∥y−Xc∥2

2 s.t. p(c) = p(c0). (2.3)

However, the cardinality constraint is NP-hard, and p(c0) is usually unknown. Thus, the cardi-
nality function is often replaced with the l1-norm, the best convex surrogate for the cardinality
function. Rewrite the l1-norm constrained problem to its Lagrangian form, we have

min
c

∥y−Xc∥2
2 +λRlasso(c), Rlasso(c) := ∥c∥1 , (2.4)

which is the well-known lasso problem.

An important extension to lasso is its grouped variant known as group lasso (Yuan and Lin,
2006), where sparsity is enforced on groups of parameters rather than isolated scalar parameters.
Consider a grouping of parameter c =: col

(
c1, . . . ,cngl

)
: ci ∈ Rni , i = 1,2, . . . ,ngl. The group

lasso regularizer is given by

Rglasso(c) :=
ngl

∑
i=1
∥ci∥2 . (2.5)

Here, l2-norms are used to relax the sparsity constraint inside each group, and the sparsity-
promoting function reduces to summation since the l2-norms are always non-negative. In this
way, sparsity is enforced on the group l2-norms: when the l2 norm is regularized to zero, all
parameters in the group are zero; when the l2 norm is non-zero, all the parameters are usually
non-zero. So, consistent sparsity is promoted inside each group.

Lasso and group lasso methods have been widely used in system identification, including identifi-
cation of switched systems (Ohlsson and Ljung, 2013), dynamic networks (Chiuso and Pillonetto,
2012), and non-linear systems with heterogeneous data (Pan et al., 2018). In this thesis, we focus
on their application to atomic norm regularization.
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2.1 High-Dimensional Regression

2.1.2 Debiasing by Iteratively Reweighted Adaptive Lasso

The l1-norm regularizer is a convex relaxation of the ideal sparsity promoting functionRideal(c) :=
# [S(c)]. Compared to the ideal regularizer, which penalizes all the non-zero parameters with a
fixed value of 1, the l1-norm regularizer penalizes them with the magnitude of the corresponding
coefficients. This induces a bias, especially for larger parameter values, i.e., the dominant modes.
This bias is a significant source of error in lasso (Pillonetto et al., 2016).

To reduce such bias, adaptive lasso (Zou, 2006) has been proposed, which adds a second step
that applies a reweighted version of the l1-norm regularizer

Ralasso(c) :=
n

∑
i=1

|ci|
|c⋆i |+ ε

, (2.6)

where c⋆i is the solution to the original lasso problem, and ε > 0 is a small constant to avoid
singularity. This regularizer reduces the amount of regularization for large coefficients in the
original problem and is close toRideal(c) when ci ≈ c⋆i .

This approach is extended to apply this reweighting iteratively (Bühlmann and van de Geer, 2011,
Section 2.8.5) by using the solution at the last iteration to update c⋆i . This is sometimes known as
iteratively reweighted lasso. It is pointed out in Gasso et al. (2009) that the iteratively reweighted
lasso can be interpreted as a difference of convex programming algorithm to solve the regularized
problem with a non-convex logarithmic regularizer

Rlog(c) :=
n

∑
i=1

log(|ci|+ ε)

logε
. (2.7)

Example 2.1. (Bias in lasso-type algorithms) Consider an identity regressor X = I, N = n. The
solutions of the estimate ĉ can be derived analytically for regularizers (2.4), (2.6), and (2.7) as
functions of ĉi with respect to yi. These functions are plotted in Figure 2.1 with λ = 2. As shown
in Figure 2.1, the lasso estimates the parameter with a soft-thresholding function, leading to a
constant bias for high yi-values. This bias is mitigated with the adaptive and the logarithmic
modifications.

The iteratively reweighted adaptive lasso can also be naturally extended to group lasso (Wang
and Leng, 2008), where the regularizer becomes

Rgalasso(c) :=
ngl

∑
i=1

∥ci∥2
∥c⋆i ∥2 + ε

. (2.8)

2.1.3 Variable Selection by Stability Selection

Lasso-type regularized problems are known to have favorable consistency properties in terms
of prediction under mild conditions. However, in terms of estimating the true active set S(c0),
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Figure 2.1: Illustration of the shrinkage property of the lasso, adaptive lasso, and logarithmic
regularizers.

Figure 2.2: Illustration of the variable selection property of the lasso estimator.

they can only guarantee that the non-active parameters are not in the true model with high
probability under practical assumptions (Bühlmann and van de Geer, 2011, Chapter 2). This
property is known as variable screening. Only the number of false negatives in the estimated
active set is controlled, but not that of false positives. In fact, there are usually many more
non-zero parameters in the estimate than those in the true one, with many occurring at “random”
locations depending on the noise realization. This phenomenon is known as the “p-value lottery"
(Meinshausen et al., 2009).

Example 2.2. (False positives in variable selection) A total of 1000 Monte Carlo simulations are
conducted with N = 80, n = 1000, c0 = col(110,0990), p(c0) = 10, ei ∼N (0,0.1). A random
design of X: Xi, j ∼ N (0,1) is used. The regularization parameters λ are selected by cross-
validation. Figure 2.2 plots the boxplot of p(ĉ) with lasso as well as the number of false positives
and negatives. It becomes clear that while lasso controls the false negatives well, it overestimates
the active set with many false positives.

If we could repeat the experiment many times, it would become obvious that the true active
parameters occur repeatedly in the estimated active set, whereas the false positives only occur
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Figure 2.3: Stability selection with (a) independent experiments and (b) subsamples.

randomly. Inspired by this idea, subsampling techniques have been used to generate new artificial
“experiments” to increase the stability of the active set estimation. One such algorithm is
CPSS proposed in Shah and Samworth (2013). This method generates complementary pairs of
subsamples from the identification data and repeats the baseline variable selection procedure
(lasso-type problems in this case) on each subsample. Define the estimated active set on the
subsample as ŜB, where B⊂{1,2, . . . ,N} defines a random subsample of data. Then, the so-called
stable solution to the problem is defined as the parameters with higher empirical probabilities of
being included in ŜB than a predefined threshold τ . The algorithm has favorable false-positive
rejection properties when τ > 0.5 (Shah and Samworth, 2013).

Example 2.3. (Stability selection with subsamples) Consider the same problem as in Example 2.2.
Figure 2.3(a) plots the empirical probabilities of each parameter being active in the 1000 Monte
Carlo simulations, whereas Figure 2.3(b) plots the empirical probabilities in 1000 subsamples
from only one simulation. Although not as clear as using 1000 independent simulations, the
active parameters can still be selected with high empirical probabilities by subsampling.

2.2 Atomic Norm Regularization for Model Complexity Control

One of the critical aspects of moving towards high-dimensional models is to control the model
complexity of the identified model in accordance with the principle of parsimony and to avoid
overfitting. In classical system identification, this is done by controlling the number of poles of
the system, which is still a common objective here despite the use of general high-dimensional
models. The Hankel nuclear norm of the impulse response is used as a convex surrogate in Smith
(2014); Fazel et al. (2001). However, this regularizer is prone to stability (Pillonetto et al., 2016)
and scalability (Shah et al., 2012) issues.

Instead, we note that, for atoms (1.5), the number of poles equals the number of non-zero
elements in C. In addition, the pole locations of the system are directly given by the active set
S(C) := {k | |ck|> 0}, with slight abuse of notation. Unlike what is discussed in Section 2.1, here
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k is a stable pole within the open unit disk, so the set of indices K thus has infinite elements. The
coefficients ck are also complex.

Remark 2.1. The atomic decomposition with (1.5) does not exactly cover the case where you have
repeated poles. However, with a continuous set of atoms, repeated poles can be approximated by
adjacent poles with arbitrarily high accuracy.

To control the number of poles of the system, a sparsity-promoting regularization termR(C) is
desired. As discussed in Section 2.1, a tractable l1-norm regularizer

R(C) = ∑
k∈K
|ck| (2.9)

is used and defined as the atomic norm of the model with respect to the atoms (1.5) (Tibshirani,
1996).

2.2.1 Real-Valued Reformulation

With atoms (1.5), the coefficients ck are complex-valued, which leads to complex-valued program
(1.7). Observe that for real-rational systems, the pole locations should be in conjugate pairs and the
corresponding atomic responses are also complex conjugates of one another, i.e., φ

(
Ak̄(q),ud

)
=

φ̄
(
Ak(q),ud

)
, where the overbar denotes the complex conjugate. This means that coefficients for

a conjugate pole pair should also be complex conjugates, i.e., ck̄ = c̄k. Adding this constraint on
the coefficients of (1.7), the problem can be reformulated as

min
{ck}k∈K̂

∥∥∥∥∥yd− ∑
k∈K̂

(
ck φk + c̄k φ̄k

)∥∥∥∥∥
2

2

+2λ ∑
k∈K̂
|ck| , (2.10)

where φk := φ
(
Ak(q),ud

)
for notational convenience and

K̂ := {k = α exp( jβ ) |α ∈ [0,1),β ∈ [0,π]}∪{1} (2.11)

denotes the upper half of the open unit disk and the static atom.

Let
γk :=

[
ℜ(ck) ℑ(ck)

]⊤
, ζk :=

[
2ℜ(φk) −2ℑ(φk)

]
. (2.12)

Substituting (2.12) into (2.10), (2.10) can be expressed as a real-valued problem,

Γ
⋆ := {γ⋆k }k∈K̂ = argmin

{γk}k∈K̂

∥∥∥∥∥yd− ∑
k∈K̂

ζkγk

∥∥∥∥∥
2

2

+2λ ∑
k∈K̂
∥γk∥2︸ ︷︷ ︸

J(Γ)

, (2.13)

where Γ :=
{

γk |k ∈ K̂
}

. Note that (2.13) is a standard group lasso problem (Yuan and Lin,
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2006). The identified transfer function can be recovered by

Ĝ(q) = ∑
k∈K̂

[1 j ]γ⋆k Ak(q)+ [1 − j ]γ⋆k Ak̄(q), (2.14)

and the estimated pole locations are

Ŝ = {k |∥γ⋆k ∥2 > 0}∪
{

k̄ |∥γ⋆k ∥2 > 0
}
. (2.15)

However, problem (2.13) cannot be directly solved since it is an infinite-dimensional problem.
Existing algorithms relax this problem by approximating K̂ with a discrete grid (Shah et al.,
2012). As shown in Proposition 4.1 of Shah et al. (2012), the discretization induces a relative
error in the atomic norm that is inversely proportional to the square root of the number of elements
in the discretized K̂.

2.2.2 Algorithm for Infinite-Dimensional Atomic Norm Regularization

This subsection proposes an algorithm to solve the infinite-dimensional problem (2.13) directly.
This algorithm is inspired by the feature generation algorithm in Rakotomamonjy et al. (2012).

Problem (2.13) is a non-differentiable convex program whose optimality conditions are given by
0 ∈ ∂J(Γ). In detail, the optimality conditions of (2.13) are{∥∥ζ⊤k R

∥∥
2 ≤ λ , if

∥∥γ⋆k

∥∥
2 = 0,

ζ⊤k R+λγ⋆k /
∥∥γ⋆k

∥∥
2 = 0, if

∥∥γ⋆k

∥∥
2 > 0,

(2.16)

for all k ∈ K̂, where R := yd−∑k∈K̂ ζkγ⋆k is the vector of output residuals. The derivation makes
use of the property

∂ ∥γ⋆k ∥2 =

{
{w | ∥w∥2 ≤ 1} ,

∥∥γ⋆k

∥∥
2 = 0,

γ⋆k /
∥∥γ⋆k

∥∥
2 ,

∥∥γ⋆k

∥∥
2 > 0.

(2.17)

Let K̂d := {k1,k2, . . . ,kp} be a finite subset of K̂ with p elements. Then, with slight abuse of
notation, by replacing K̂ with K̂d in (2.13), a discretized optimal solution, denoted by Γ⋆(K̂d) :={

γ⋆i (K̂d)
}p

i=1
, can be obtained, which satisfies


∥∥∥ζi(K̂d)

⊤R(K̂d)
∥∥∥

2
≤ λ , if

∥∥∥γ⋆i (K̂d)
∥∥∥

2
= 0,

ζi(K̂d)
⊤R(K̂d)+λ

γ⋆i (K̂d)∥∥∥γ⋆i (K̂d)
∥∥∥

2

= 0, if
∥∥∥γ⋆i (K̂d)

∥∥∥
2
> 0,

(2.18)

for i = 1, . . . , p, where R(K̂d) := yd−∑
p
i=1 ζi(K̂d)γ

⋆
i (K̂d) and ζi(K̂d) := ζki .

Suppose we want to add a new element kp+1 to K̂d . Then the optimal solution with respect to
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K̂+
d := K̂d ∪{kp+1} is

γ
⋆
i (K̂+

d ) =

{
γ⋆i (K̂d), i = 1, . . . , p,

0, i = p+1,
(2.19)

iff
∥∥∥ζp+1(K̂+

d )
⊤R(K̂d)

∥∥∥
2
≤ λ . In other words, adding such new elements does not improve

the optimal objective function value or change the transfer function estimate Ĝ(q). So the new
element only reduces the objective function value when

∥∥∥ζ⊤kp+1
R(K̂d)

∥∥∥
2
> λ . This also guarantees

kp+1 /∈ K̂d since
∥∥∥ζ⊤ki

R(K̂d)
∥∥∥

2
≤ λ for i = 1, . . . , p.

Motivated by the above observation, Algorithm 2.1 is proposed to solve the infinite-dimensional
group lasso problem (2.13), where a greedy strategy is applied that chooses the new element by
maximizing

∥∥∥ζ⊤kp+1
R(K̂d)

∥∥∥
2
. Note that K̂l

d denotes the set K̂d at the l-th iteration in Algorithm 2.1.

The transfer function and the pole location estimates Ĝ(q) and Ŝ can be calculated by (2.14) and
(2.15) respectively with discretized atomic set K̂l

d and coefficients Γ⋆(K̂l
d), which are the output

of Algorithm 2.1.

Algorithm 2.1 A greedy algorithm for the infinite-dimensional group lasso problem (2.13)

1: Input: identification data (ud ,yd), ε > 0, lmax
2: Initialize K̂0

d = {k1,k2, . . . ,kp0}.
3: Calculate Γ⋆(K̂0

d).
4: l← 0
5: repeat
6: Construct a candidate new atom

k+← argmax
k∈K̂

∥∥∥ζ
⊤
k R(K̂l

d)
∥∥∥

2
. (2.20)

7: if
∥∥∥ζ⊤k+R(K̂l

d)
∥∥∥

2
≥ λ + ε then

8: begin
9: kp0+l+1← k+, K̂l+1

d ← K̂l
d ∪{kp0+l+1}

10: Calculate Γ⋆(K̂l+1
d ) via program (2.13).

11: end
12: else
13: Break
14: l← l +1
15: until l ≥ lmax
16: Output: K̂l

d , Γ⋆(K̂l
d)

Let

Γ̂
⋆ :=

{
γ
⋆
k

∣∣∣∣∣γ⋆k =

{
γ⋆i (K̂l

d), k = ki ∈ K̂l
d

0, k ∈ K̂ \ K̂l
d

}
. (2.21)

Algorithm 2.1 guarantees the following property.
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Proposition 2.1. If Algorithm 2.1 terminates without reaching the maximum number of iterations
(l < lmax), Γ̂⋆ satisfies the approximate optimality conditions{∥∥ζ⊤k R

∥∥
2 < λ + ε, if

∥∥γ⋆k

∥∥
2 = 0,

ζ⊤k R+λγ⋆k /
∥∥γ⋆k

∥∥
2 = 0, if

∥∥γ⋆k

∥∥
2 > 0,

(2.22)

for all k ∈ K̂.

Proof. Since γ⋆k = 0 for k /∈ K̂l
d in Γ̂⋆, we have R = R(K̂l

d). For k ∈ K̂l
d , the discretized op-

timality conditions (2.18) guarantee the satisfaction of (2.22). According to Algorithm 2.1,∥∥∥ζ⊤k R(K̂l
d)
∥∥∥

2
=
∥∥ζ⊤k R

∥∥
2 < λ + ε . So for k /∈ K̂l

d , (2.22) is satisfied since
∥∥γ⋆k

∥∥
2 = 0.

Proposition 2.1 shows that the infinite-dimensional problem (2.13) is approximately equivalent
to the finite-dimensional problem with (p0 + l) atoms

argmin
{γi}

p0+l
i=1

∥∥∥∥∥yd−
p0+l

∑
i=1

ζkiγi

∥∥∥∥∥
2

2

+2λ

p0+l

∑
i=1
∥γi∥2 . (2.23)

For the rest of the chapter, define p := p0 + l.

The main difficulty in Algorithm 2.1 is solving the non-convex problem (2.20). However, even if
(2.20) is not solved exactly, Algorithm 2.1 still guarantees a decrease in the objective function
value at each iteration as long as

∥∥∥ζ⊤k+R(K̂l
d)
∥∥∥

2
≥ λ + ε is satisfied for the candidate atom k+.

2.2.3 Debiasing & Pole Location Estimation

Algorithm 2.1 provides a method to solve the group lasso problem (2.13). However, as discussed
in Sections 2.1.2 and 2.1.3, solutions to lasso-type regularized problems are known to have a
large bias and a large number of false positives in feature selection. To mitigate these problems,
the iteratively reweighted adaptive lasso and CPSS are applied to debias the estimate and reject
false positives in pole location estimation from Algorithm 2.1.

The iteratively reweighted adaptive approach discussed in Section 2.1.2 is applied to the group
lasso problem (2.13) in Algorithm 2.2. It is easy to see that the number of estimated pole locations
is non-increasing at each iteration.

CPSS discussed in Section 2.1.3 is applied in Algorithm 2.3. This corresponds to replacing the
loss function

L(·) =
∥∥∥∥∥yd−

p

∑
i=1

ζkiγi

∥∥∥∥∥
2

2

(2.25)
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Algorithm 2.2 Iteratively reweighted adaptive group lasso

1: Input: identification data (ud ,yd), ε > 0, ms

2: Find K̂l
d = {k1, . . . ,kp} , Γ⋆(K̂l

d) :=
{

γ
⋆,0
1 , . . . ,γ⋆,0p

}
from Algorithm 2.1.

3: for m = 1 to ms do
4: begin
5: Find

{
γ
⋆,m
i

}p
i=1 by solving

argmin
{γi}p

i=1

∥∥∥∥∥yd−
p

∑
i=1

ζkiγi

∥∥∥∥∥
2

2

+2λ

p

∑
i=1

∥γi∥2∥∥∥γ
⋆,m−1
i

∥∥∥
2
+ ε

. (2.24)

6: end
7: Calculate Ĝ(q) by (2.14) with discretized atomic set K̂l

d and coefficients
{

γ
⋆,ms
i

}p
i=1.

8: Output: Ĝ(q)

with

LB(·) :=

∥∥∥∥∥yd(B)−
p

∑
i=1

ζki(B, :)γi

∥∥∥∥∥
2

2

, (2.26)

where B⊂ {1,2, . . . ,N} defines a random subsample of data. The transfer function can also be
estimated by least squares on the stable solution of the atomic set.

Algorithm 2.3 Complementary pairs stability selection (CPSS)

1: Input: identification data (ud ,yd), τ ∈ (0.5,1], ns

2: Find K̂l
d from Algorithm 2.1.

3: for i = 1 to ns do
4: begin
5: Generate a random subsample Bi ⊂ {1,2, . . . ,N} with ⌊N/2⌋ elements.
6: B̄i←{1,2, . . . ,N}\Bi

7: Calculate ŜBi , ŜB̄i
by solving (2.23) with the loss function L(·) replaced by LBi(·), LB̄i

(·)
respectively.

8: end
9: Ŝ←

{
k
∣∣∣ 1

2ns
∑

ns
i=1

(
1ŜBi

(k)+1ŜB̄i
(k)
)
≥ τ

}
, where 1 denotes the indicator function.

10: Output: Ŝ

2.2.4 Numerical Results

The performances of the proposed algorithms are assessed by numerical simulation on a bench-
mark fourth-order system previously analyzed in Landau et al. (1995):

G1(q) =
0.10884q+0.19513

q4−1.41833q3 +1.58939q2−1.31608q+0.88642
. (2.27)
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2.2 Atomic Norm Regularization for Model Complexity Control

Figure 2.4: The number of additional atoms l in Algorithm 2.1 for σ2 = 0.1. Blue: mean values,
yellow: ranges within one standard deviation.

The system has been normalized to have anH2-norm of 1. In what follows, results obtained with
Algorithms 2.1, 2.2, and 2.3 are labelled by InfA, AdpInfA, and SS respectively.

Identification data of length N = 100 are generated with zero-mean i.i.d. unit Gaussian inputs
from a zero initial condition. Two noise levels σ2 = 0.1 and 0.01 are considered. The atomic
responses φk are also generated from a zero initial condition. 100 Monte Carlo simulations are
conducted for each noise level. The initial discretized atomic set K̂0

d contains p0 = 50 randomly
generated atoms with ki = αi exp( jβi), where αi and βi are subject to uniform distributions in
[0,1) and [0,π] respectively. Finite-dimensional group lasso problems are solved by MOSEK.
The candidate atom generation problem (2.20) is solved by the particle swarm solver in MATLAB.
The hyperparameter λ is selected by cross-validation from a 15-point log-space grid between
0.05 and 5 for σ2 = 0.1 and between 0.005 and 0.5 for σ2 = 0.01, except for SS where λ is fixed
to 0.5 for σ2 = 0.1 and 0.05 for σ2 = 0.01. The following parameters are used in simulation:
ε = 10−5, τ = 0.9, ns = 50, and ms = 2.

First, the number of additional atoms l required in Algorithm 2.1 is plotted against the λ values
in Figure 2.4. The maximum l in all Monte Carlo simulations is 118, which is below the lmax

setting. Results show that the proposed greedy atom generation approach can converge within a
reasonable number of iterations, and the required number of additional atoms decreases with λ .

To demonstrate the performance of the proposed algorithms, they are compared to three bench-
mark algorithms: 1) least-squares estimation with an ARX model and a known true model order
(ARX); 2) kernel-based identification with a TC kernel design (TCK) (Chen et al., 2012), where
hyperparameters are obtained by the empirical Bayes approach; 3) discretized atomic norm
regularization in Shah et al. (2012) with 50 (Atom) and 500 (Atom2) random atoms. Note that
Atom2 uses a significantly larger atomic set compared to Algorithm 2.1, as shown in Figure 2.4.

Figure 2.5 compares the identification accuracy of all algorithms in terms of the impulse response
fitting W . It can be seen that the three proposed algorithms all perform better than the benchmark
algorithms at both noise levels. In particular, InfA obtains better fitting compared to Atom2,
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Figure 2.5: Boxplot of impulse response fitting. Yellow: σ2 = 0.1, cyan: σ2 = 0.01.

Table 2.1: Bias-variance analysis of impulse response estimation.

TCK Atom Atom2 InfA SS AdpInfA
σ2 = 0.1

Bias2 [×10−2] 6.76 23.42 6.34 2.63 8.28 0.91
Var [×10−2] 13.04 13.59 8.52 3.80 15.68 2.70

MSE [×10−2] 19.80 37.01 14.86 6.44 23.96 3.60
σ2 = 0.01

Bias2 [×10−2] 1.78 15.92 2.22 0.43 0.47 0.07
Var [×10−2] 5.45 11.68 5.26 0.76 3.12 0.52

MSE [×10−2] 7.23 27.60 7.48 1.18 3.59 0.59

which uses a much larger atomic set. This demonstrates the effectiveness of the proposed atom
generation approach. AdpInfA further improves on the identification accuracy of InfA with
iterative reweighting.

To further investigate the sources of the estimation errors, Table 2.1 shows the bias-variance
analysis of impulse response estimation. As an algorithm proposed to debias the estimate, AdpInfA
indeed produces a much smaller bias than all other algorithms. This is also the main contributor
to the reduction of mean squared error (MSE) compared to the baseline InfA algorithm, on which
AdpInfA is based.

Finally, the capability of estimating the poles of the system is demonstrated in Figures 2.6 and
2.7. It is illustrated in Figure 2.6 that all the algorithms that directly solve group lasso problems
estimate a much larger number of poles compared to the true one, similar to the phenomenon
observed in Example 2.2. AdpInfA mitigates the over-estimation since the active atomic set
shrinks at each iteration, whereas SS obtains a very accurate model order estimation.

To assess the accuracy of pole location estimation, Figure 2.7 further compares the distributions
of estimated pole locations in all 100 Monte Carlo simulations. Despite knowing the true model
order, ARX fails to estimate the pole locations accurately. Although the estimated model order
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Figure 2.6: Comparison of estimated model orders for σ2 = 0.1.
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Figure 2.7: Distributions of estimated pole locations in all 100 Monte Carlo simulations for
σ2 = 0.1.

is close to the true one, AdpInfA estimates a significant number of false positives in terms of
the actual pole locations. Among all the algorithms, only SS can obtain accurate pole location
estimations with few false positives, proving the effectiveness of the CPSS method.

2.3 Summary

This chapter applies advanced techniques studied in high-dimensional statistics to the atomic
norm regularization problem in linear system identification. A greedy algorithm is presented to
generate new candidate atomic models from infinitely many possible pole locations. Common
drawbacks of lasso-type regularization are mitigated by adaptively adjusting the regularization
weights for each atom and selecting only repeatedly occurring pole locations from subsamples of
data.

Results in this chapter suggest that sparse learning algorithms are a promising alternative to
kernel-based methods with fewer design requirements and direct pole location estimation. Further
research directions include improvements in computational efficiency, comparison with model
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order reduction methods, and extensions to multiple-input multiple-output systems and frequency-
domain data.
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3 Kernel Learning in System Identifica-
tion

In this chapter, we first introduce the regularized impulse response estimator with three different
interpretations in Section 3.1. Then, the critical problem of designing the weighting matrix K in
the estimator is discussed in Section 3.2.

Section 3.3 proposes a novel multiple regularization method that promotes low-complexity
model structure in terms of the number of poles. Multiple regularization has been applied
with tuned/correlated (TC) kernels (Chen et al., 2014; Hong et al., 2018) and filters (Chen
et al., 2018) with successful applications to complex systems. The novelty of the proposed
method is in both the design of basis regularization matrices and the hyperparameter tuning. The
basis regularization matrices are designed to be optimal regularization matrices for first-order
systems. This design shows that the number of poles in the identified model corresponds to the
cardinality of the hyperparameters. Then, the hyperparameters are estimated using a maximum
a posteriori (MAP) approach. By selecting a sparse hyperprior for the hyperparameters, the
MAP hyperparameter tuning gives a sparse estimation of the hyperparameters. The resulting
optimization problem has the form of difference of convex programming (DCP) problems, which
can be efficiently solved. Simulation results demonstrate that the proposed method achieves a
better bias-variance trade-off and a better fit to the model than existing methods.

Error-bound quantification has also been an important topic in kernel and GP learning. In kernel-
based linear system identification, Pillonetto and Scampicchio (2022) establishes non-asymptotic
bounds for all stable systems with bounded pole magnitudes. However, the bounds are too
conservative and thus only useful for sample complexity analysis. Error bounds are also widely
studied in GP literature, e.g., Maddalena et al. (2021); Srinivas et al. (2012), usually obtained by
scaling posterior standard deviations. Such bounds are derived assuming the prior covariance
function is exact and/or an upper bound of the RKHS-induced norm is known. However, both
assumptions are impractical in general. Several works provide modified bounds considering the
discrepancy between the applied and the true kernel functions (Capone et al., 2022; Beckers et al.,
2018; Fiedler and Lucia, 2021; Tuo and Wang, 2022). These results depend on knowledge of the
magnitude of the discrepancy, which is usually not known a priori. Such information is estimated

31



Chapter 3. Kernel Learning in System Identification

from data in Capone et al. (2022) by investigating the maximum marginal likelihood problem in
hyperparameter estimation. Unfortunately, these works all consider an identity regressor, which
is not common in system identification, and often consider kernel classes that do not contain the
typical stable kernels used in linear system identification. Sampling-based approaches have also
been proposed. The sign-perturbed sums approach is used in Baggio et al. (2022) by randomly
perturbing the sign of model residuals. The Markov chain Monte Carlo approach is used in
Pillonetto and Ljung (2023) to approximate the full posterior distribution. However, such bounds
are based on sampling and thus do not admit an easy-to-use analytic form.

Section 3.4 provides probabilistic error bounds for kernel-based linear system identification
with no prior knowledge of the hyperparameters by extending Capone et al. (2022) to general
regression problems and stable kernels. The proof in Capone et al. (2022) is also simplified
with an improved constant. Our approach assumes the correct kernel structure and a known
hyperprior that describes the distribution of the hyperparameters. A high-probability set is first
estimated for the hyperparameters from the marginal likelihood function. Then, the worst-case
posterior covariance is found within the range of hyperparameters. A uniform bound is obtained
for diagonal and tuned/correlated (TC) kernels. For general kernels, element-wise bounds can
be found by optimization. Finally, probabilistic error bounds are established by scaling the
worst-case posterior standard deviations. Optimization problems to obtain the tightest error
bounds are discussed as well. Numerical simulations demonstrate that the proposed error bounds
can provide high-probability bounds of the estimation error in practice.

3.1 The Threefold Interpretation of Kernel-Based Identification

As mentioned in Section 1.5, in this chapter, the problem of identifying the impulse response
(gl)

∞
l=0 is considered. The stability of G0(q) implies that the impulse response decays exponen-

tially. Thus, it is reasonable to truncate the infinite impulse response at a sufficiently high order,
denoted by ng. Accordingly, the system is approximated with a finite-length impulse response
of g := [g0,g1, . . . ,gng−1]

T ∈ Rng . This leads to the finite impulse response (FIR) model of the

system, which is defined as G0(q) = ∑
ng−1
l=0 glq−1, i.e.,

yt =
ng−1

∑
l=0

glut−l + vt . (3.1)

Using the identification data (ud ,yd), the following data equation is constructed:
yd

1
yd

2
...

yd
N


︸ ︷︷ ︸

yd

=


ud

1 0 · · · 0
ud

2 ud
1 · · · 0

...
...

. . .
...

ud
N−1 ud

N−2 · · · ud
N−ng


︸ ︷︷ ︸

Φ


g0

g1
...

gng−1


︸ ︷︷ ︸

g

+


v1

v2
...

vN


︸ ︷︷ ︸

v

, (3.2)
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where, for the sake of simplicity, a zero initial condition is assumed, i.e., ud
t = 0, ∀ t ≤ 0. This is

used as a regression model for estimating g.

Since vt ∼N (0,σ2), we have p(yd |ud ,g)∼N (Φg,σ2I). If no prior knowledge is assumed for
G0(q), the maximum likelihood estimator of g is given by the least-squares solution

ĝLS := argmax
g

p(yd |ud ,g) = argmin
g

∥∥yd−Φg
∥∥2

2 =
(

Φ
⊤

Φ

)−1
Φ
⊤yd , (3.3)

where Φ and g are defined in (3.2). The least-squares solution is the best unbiased estimator
with i.i.d. Gaussian output noise (Ljung, 1999). It is well-known that the estimation error is also
Gaussian with covariance cov(g) = σ2

(
Φ⊤Φ

)−1
=: ΣLS. Element-wise stochastic error bounds

can be obtained for ĝLS as

P
(∣∣ĝLS

l −gl
∣∣≤ µδ

√
ΣLS

l,l

)
≥ 1−δ , (3.4)

where µδ is the two-tailed quantile function of the Gaussian distribution, given by

FN (µδ )≥ 1−δ/2, (3.5)

FN (·) is the cumulative distribution function of the Gaussian distribution.

However, since the parameter dimension ng is typically large, the estimate’s variance can be high
under high noise levels, a phenomenon known as overfitting. This issue can be alleviated by
introducing suitable regularizers into (3.3) (Pillonetto et al., 2014; Chen, 2018). Note that the
impulse response of the stable system G0(q) is typically smooth and exponentially converges to
zero. Such prior knowledge can be encoded as 1) a basis decomposition, 2) a prior distribution in
GP regression, or 3) an RKHS in kernel regression. In all three cases, the nominal estimate of g
is given by the regularized least-squares solution

ĝ := argmin
g

∥∥yd−Φg
∥∥2

2 +σ
2 g⊤K−1g =

(
Φ
⊤

Φ+σ
2K−1

)−1
Φ
⊤yd . (3.6)

With different interpretations of K, the regularized estimate ĝ has a threefold meaning.

Ridge regression with basis decomposition. In the basis decomposition interpretation, the
impulse response vector g is parametrized by bases (gi)

nb
i=1, i.e., g = ∑

nb
i=1 αigi = Gα , where

nb is the dimension of the bases, G := [g1 g2 . . . gnb ] ∈ Rng×nb collects all the bases, and
α := col(α1,α2, . . . ,αnb) collects all the coefficients. The coefficients can be estimated by the
following ridge regression problem:

α̂ := argmin
α

∥∥yd−ΦGα
∥∥2

2 +σ
2 ∥α∥2

2 =
(

G⊤Φ
⊤

ΦG+σ
2I
)−1

G⊤Φ
⊤yd . (3.7)
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By selecting K = GG⊤, we have

ĝ =
(

Φ
⊤

Φ+σ
2K−1

)−1
Φ
⊤yd =

(
GG⊤Φ

⊤
Φ+σ

2I
)−1

GG⊤Φ
⊤yd

= G
(

G⊤Φ
⊤

ΦG+σ
2I
)−1

G⊤Φ
⊤yd = Gα̂.

(3.8)

This means that K can be interpreted as the sum of the outer products of the basis impulse
responses.

Maximum a posteriori estimate with a Gaussian prior. In the GP regression interpretation,
K is selected as the covariance of the prior distribution of g: g ∼N (0,K). Then yd and g are
jointly Gaussian: [

g
yd

]
∼N

(
0,

[
K KΦ⊤

ΦK ΦKΦ⊤+σ2I

])
. (3.9)

From the property of Gaussian distribution, the distribution of g given yd is also Gaussian:
g|ud ,yd ∼N (ĝ,Σ), where the posterior mean is the estimate ĝ and Σ := σ2

(
Φ⊤Φ+σ2K−1

)−1

is the posterior covariance (Chen et al., 2012). This means that the MAP estimate of g given the
prior distribution is given by ĝ: ĝ = argmax

g
p(g|ud ,yd).

From the posterior covariance, the associated element-wise stochastic error bounds are

P
(
|ĝl−gl| ≤ µδ

√
Σl,l

)
≥ 1−δ , (3.10)

conditioned on the identification data. The bounds assume a random design of g and that the
prior distribution of g is correct.

Regularization in a reproducing kernel Hilbert space. In the kernel regression interpretation
(Saitoh and Sawano, 2016, Chapter 3), the continuous-time impulse response function g(t) :
[0,+∞)→R, g(l) = gl , l = 0, . . . ,ng−1 is identified by solving the regularized function learning
problem within an RKHSH associated with a kernel function k(·, ·) : [0,+∞)× [0,+∞)→ R:

g⋆(·) := arg min
g(·)∈H

∥∥yd−Φg
∥∥2

2 +σ
2 ∥g(·)∥2

H

s.t. g =
[
g(0) . . . g(ng−1)

]⊤
,

(3.11)

where the regularizer ∥g(·)∥H is the norm of g(·) induced byH.

From the representer theorem (Schölkopf et al., 2001), the optimal continuous-time impulse
response function for (3.11) is given by g⋆(x) = kx

(
Φ⊤ΦK +σ2I

)−1
Φ⊤yd , where K evaluates

the kernel function associated with the RKHS H at l = 0, . . . ,ng− 1, i.e., Kl,l = k(l, l), and
kx := [k(x,0) . . . k(x,ng−1)]. The corresponding optimal discrete-time impulse response vector
is g⋆ = ĝ. The induced norm of g⋆ is calculated as ∥g⋆(·)∥2

H = ĝ⊤K−1ĝ. This means that ĝ is
the discrete-time restriction of the solution to the regularized function learning problem when K
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evaluates the kernel function values at discrete time points.

3.2 Kernel Design and Hyperparameter Selection

As seen from the previous section, the regularization weighting matrix K is critical to the
performance of the kernel-based method. Extensive studies have been conducted to obtain
appropriate structures of K that promote impulse response estimates that are both smooth and
exponentially converge to zero (Chen, 2018). These structures parametrize the kernel with
hyperparameters η ∈ E ⊆ Rnη : K := K(η).

The hyperparameters must be selected before applying the estimator (3.6). The most widely
used approach to hyperparameter selection is the maximum marginal likelihood method, also
known as the empirical Bayes method. It uses the GP regression interpretation and maximizes
the probability of observing yd given the inputs ud and the hyperparameters η :

η̂ := argmin
η
− log p(yd |ud ,η), (3.12)

where

p(yd |ud ,η) := exp
(
−1

2
logdet Ψ(η)− 1

2

(
yd
)⊤

Ψ
−1(η)yd + const.

)
(3.13)

and Ψ(η) := σ2I+ΦK(η)Φ⊤. If the prior distribution of the hyperparameters p(η), known as
the hyperprior, is available, η can also be estimated using an MAP approach:

η̂
MAP := argmin

η
− log p(yd |ud ,η)p(η). (3.14)

The estimated hyperparameters η̂ are used, with certainty equivalence, to construct K (η̂) and
then to obtain the estimate ĝ.

Dedicated kernel structures have been designed for linear system identification. The most
commonly used ones include:

1. diagonal (DI): KDI
i,i (η) = cKλ i

K , KDI
i, j (η) = 0 for i ̸= j,

2. tuned/correlated (TC): KTC
i, j (η) = cKλ

max(i, j)
K ,

3. stable spline (SS): KSS
i, j (η) = cKλ

2max(i, j)
K

(
λ

min(i, j)
K

2 − λ
max(i, j)
K

6

)
,

where η := [cK λK ]
⊤ ∈ E :=

{
[cK λK ]

⊤
∣∣∣cK ≥ 0,0≤ λK ≤ 1

}
are the hyperparameters. These

kernel designs have been shown effective both theoretically and numerically (Pillonetto et al.,
2022).

Alternatively, K can be parametrized as a linear combination of a family of basis matrices Ki, i.e.,
K(η) = ∑

nη

i=1 ηiKi, for all η ∈ E . This structure is known as multiple kernel design in Chen et al.
(2014). When basis matrices Ki have a rank of 1, they can be interpreted as outer products of
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basis impulse responses as discussed in Section 3.1. Section 3.3 investigates the following two
main problems in multiple kernel design.

What is the appropriate choice of Ki? A suitable structure of basis matrices Ki is proposed for
estimating a model with control of the number of poles.

What is the appropriate approach to tune ηi? In contrast to conventional single kernel design,
where hyperparameter tuning is often conducted by non-convex optimization or grid search since
nη is small, a high-dimensional hyperparameter tuning problem must be addressed in multiple
kernel design. The high-dimensional problem is then prone to high variance and computational
intractability. A sparse hyperparameter tuning approach is presented using MAP estimation with
a sparse hyperprior.

Given a well-tuned weighting matrix K, the kernel-based method leads to a nominal estimate
with the desired model structure and a satisfactory bias-variance trade-off. However, the effect of
hyperparameter estimation on the error bounds (3.10) is unknown. In Section 3.4, we construct
error bounds when the hyperparameters are estimated with a single kernel design.

3.3 Sparse Kernel Design in Impulse Response Estimation

3.3.1 From Model Complexity to Hyperparameter Sparsity

To reveal the number of poles in the model, we again start from the atomic decomposition (1.5)
used in Chapter 2. Define the atomic impulse response gk as the finite impulse response of Ak(q)
given by

gk :=
(
1−|k|2

)
[0 1 k . . . kng−2]T ∈ Cng , g1 := [1 0 . . . 0]⊤ (3.15)

and the atomic weighting matrix
Kk := gk (gk)

H . (3.16)

As proved in Chen et al. (2012), when the underlying system is exactly Ak(q), the optimal
weighting matrix is given by Kk . As discussed in Sections 3.1, a summation of Kk corresponds to
a basis impulse response design of gk . Both facts motivate the selection of Kk as the basis matrix
in multiple kernel design.

Therefore, the following structure of K(η) is proposed:

K(η) =
nη

∑
i=1

ηiKki =
nη

∑
i=1

ηigki (gki)
H , (3.17)

where
{

k1,k2, . . . ,knη

}
=: Kd ⊂ K are a dense discretization of all the stable poles K and

the hyperparameters
[
η1 η2 . . . ηnη

]T ∈ Rnη

+ are denoted by η . For real-valued systems, it is
required that for any k ∈Kd , one has k̄ ∈Kd , where the overbar denotes the complex conjugate.
Furthermore, the weighting matrix Kη should also be real-valued. Noting that Kki = K̄k j for any
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3.3 Sparse Kernel Design in Impulse Response Estimation

ki = k̄ j, η needs to be constrained to satisfy

ηi = η j, ∀ i, j such that ki = k̄ j. (3.18)

In Section 3.1, regularized estimate (3.6) assumes a positive definite K with a well-defined matrix
inverse. However, multiple kernel design (3.17) might only be positive semi-definite since it is a
summation of rank-1 positive semi-definite matrices. A straightforward extension to (3.6) for a
positive semi-definite K is given as follows.

Let the singular value decomposition (SVD) of K be given as

K =
[
U1 U2

][K′ 0
0 0

][
UT

1
UT

2

]
, (3.19)

where K′ is a diagonal matrix with positive diagonal entries. The regularized impulse response
estimate ĝ is defined as the solution of the following constrained regularized problem (Chen et al.,
2014):

ĝ = argmin
g
∥yd−Φg∥2 +σ

2gTU1
(
K′
)−1UT

1 g s.t. UT
2 g = 0 (3.20)

= KΦ
⊤
(

ΦKΦ
⊤+σ

2I
)−1

yd (3.21)

Problem (3.20) constraints the estimate to the range of U1. Note that

range(U1) = span
(
{gki}ηi ̸=0

)
. (3.22)

This leads to the following lemma.

Lemma 3.1. Let K = K(η) given in (3.17). There exists c := [c1 c2 . . . cnη
]T ∈ Cnη such that

the regularized estimate ĝ in (3.21) can be decomposed as ĝ = ∑
nη

i=1 cigki , where ci = 0 for all
ηi = 0.

According to Lemma 3.1, the desired low-complexity structure of the estimated impulse response
is induced by the sparsity of the hyperparameters η . However, to have a favorable impulse
response estimation, the set Kd should be nearly dense in K. Accordingly, employing a large set
of atomic weighting matrices is advantageous, i.e., nη should be large. This suggests performing
sparse estimation at the level of hyperparameter tuning, which will be discussed in the following
subsection. Meanwhile, a satisfactory bias-variance trade-off at the level of impulse response
estimation is maintained by utilizing the regularized identification method in (3.20).

Remark 3.1. This approach differs from the atomic norm regularization discussed in Chapter 2,
where l1-norm regularization is directly imposed on the decomposition coefficients c at the level
of impulse response estimation. This direct sparsity regularization adds more regularization to
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the impulse response estimation. The atomic norm regularization is known to suffer from high
bias in its basic form, as shown in Section 2.1.2.

3.3.2 Maximum a Posteriori Estimation of Hyperparameters

The empirical Bayes method (3.12) performs well when the number of hyperparameters is small,
and the data set is not too small or noisy. However, as discussed in the previous subsection, a
considerably large number of hyperparameters are to be estimated here. In this situation, the
empirical Bayes method is prone to high variance. Therefore, employing the MAP approach is
preferable, especially when prior knowledge of the hyperparameter sparsity is available.

To impose additional sparsity regularization for estimating the hyperparameters introduced in the
previous subsection, the MAP approach (3.14) is used with a hyperprior that induces sparsity.

Define set K+
d := {ki ∈Kd |ℑ(ki)≥ 0}. According to the structural constraint of K(η) given in

(3.18), we only need to estimate ηi for ki ∈K+
d . The remaining hyperparameters are determined

automatically. In this subsection, with an abuse of notation, η denotes the vector of independent
hyperparameters (ηi)ki∈K+

d
and nη denotes the cardinality of K+

d .

The hyperprior for ηi is selected as an i.i.d. exponential distribution (Aravkin et al., 2014).
More precisely, we have p(ηi) := λη exp(−ληηi) with support ηi ≥ 0, where λη > 0 is the
rate parameter of the distribution, which can be considered as the “hyper-hyperparameter”
that parametrizes the hyperprior. In this paper, λη is selected by cross-validation. The prior
distribution of η is thus given by

p(η) = λ
nη

η exp

(
−λη

nη

∑
i=1

ηi

)
, η ≥ 0. (3.23)

Substituting (3.23) and (3.13) into (3.14), we have

η̂
MAP = argmin

η

1
2

logdet Ψ(η)+
1
2

(
yd
)⊤

Ψ
−1(η)yd +λη

nη

∑
i=1

ηi︸ ︷︷ ︸
JREB(η)

, s.t. η ≥ 0. (3.24)

Note that JREB(η) = J1
REB(η)− J2

REB(η), where

J1
REB(η) =

1
2

(
yd
)⊤

Ψ
−1(η)yd +λη

nη

∑
i=1

ηi, J2
REB(η) =−1

2
logdet Ψ(η) (3.25)

are both convex functions. So optimization problem (3.24) can be expressed as a DCP problem,
which can be solved efficiently with existing algorithms such as Shen et al. (2016); Yuille and
Rangarajan (2002).
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3.3 Sparse Kernel Design in Impulse Response Estimation

The difference between (3.24) and the empirical Bayes method (3.12) is the λη ∑
nη

i=1 ηi term in the
objective function, which comes from the sparse hyperprior. This term performs regularization on
hyperparameter estimation to improve the bias-variance trade-off. Therefore, the MAP estimate
(3.24) can be alternatively called the regularized empirical Bayes method.

Remark 3.2. It is observed that the empirical Bayes method (3.12) may also induce sparse
hyperparameter estimates here. This is because the log-determinant term 1

2 logdet Ψ(η) is known
to promote low-rank structures of K(η) which corresponds to a sparse η estimate (Fazel et al.,
2003). Nevertheless, the sparsity of the MAP estimator can be controlled by the rate parameter
λη , recovering the empirical Bayes estimate by setting λη = 0.

3.3.3 Numerical Results

This subsection compares the proposed multiple kernel design with sparse hyperparameter tuning
to existing regularization formulations with the atomic structure. The least squares method
without regularization and a single kernel design with the TC kernel are also compared as the
baseline performance. Note that these two methods do not estimate a low-complexity model
regarding the number of poles.

Specifically, the following five identification schemes are compared. The least squares method
(LS) corresponds to the estimate ĝLS in (3.3). The system is also identified with a TC kernel
(TCK) regularization. The hyperparameters are selected by the empirical Bayes method with
non-convex optimization. This is also the defaulted identification method used in the MATLAB

command impulseest. The atomic norm method (Atom) applies the discretized atomic norm
regularization in Shah et al. (2012). Atom uses a set of atomic transfer functions characterized by
the poles k = α exp( jβ ), where β = [0 : π/15 : π] in the MATLAB notation. The magnitude α is
in a 15-point logarithmic grid of base 106 between 0.8 and 1 to obtain a denser grid near α = 1.
The empirical Bayes method (EB) uses the hyperparameter estimate (3.12) without explicitly
exploiting the sparse kernel structure. The regularized empirical Bayes method (REB) refers to
the method proposed in this section. Both EB and REB regularize the problem with the multiple
kernel design (3.17) with the same set of poles as Atom. This gives a total of nη = 240 kernels.

To highlight the characteristics of the bias-variance trade-off in these methods, Monte Carlo
simulations are conducted on a benchmark system under i.i.d Gaussian noise of two different
levels (σ2 = 0.01,0.001) with 150 different noise realizations each. The transfer function of the
chosen fourth-order system is

G2(q) =
0.1159(q3 +0.5q2)

q4−2.2q3 +2.42q2−1.87q+0.7225
, (3.26)

which is one of the benchmark systems tested in Pillonetto and De Nicolao (2010). The system has
been normalized to have anH2-norm of 1. The input to the system is Gaussian with ud

t ∼N (0,1).
The length of the identification data is N = 150, and the order of the FIR model is ng = 50. For
EB and REB, the noise variance σ2 is estimated from the variance of the residuals in LS. For
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Atom and REB, the weighting of the l1-norm regularization λ and the rate parameter λη are
cross-validated over a five-point grid of logspace(0,4,5) and logspace(-1,1,5) in
the MATLAB notation, respectively. The DCP optimization problem in REB is solved by a fixed
number of five iterations.
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Figure 3.1: Comparison of fitting performance under different noise levels. The last three methods
estimate a low-complexity model with atomic structure.

Table 3.1: Bias-variance trade-off of different estimates.

LS TCK Atom EB REB
σ2 = 0.01

Bias2 [×10−4] 1.6 8.5 11.2 5.6 8.4
Var [×10−4] 61.0 23.6 17.1 20.8 12.3

MSE [×10−4] 62.6 32.1 28.3 26.4 20.8
σ2 = 0.001

Bias2 [×10−4] 0.15 0.96 1.24 0.37 0.68
Var [×10−4] 6.23 3.79 2.97 2.98 2.52

MSE [×10−4] 6.38 4.75 4.21 3.35 3.20

First, the fitting performance of the five methods is compared in Figure 3.1 using boxplots. As
can be seen from Figure 3.1, REB achieves the best fitting performance at both noise levels.
Compared to REB, the performance of EB is poor under the higher noise level, whereas Atom and
TCK perform worse under the lower noise level. In both cases, LS fails to perform well without
regularization.

Furthermore, the bias and the variance of the estimates are calculated in Table 3.1. It can be seen,
as discussed in Pillonetto et al. (2014), that the bias-variance trade-off is controlled by the amount
of regularization imposed. The MSE of LS is dominated by the variance since no regularization
is imposed. Note that there is an inherent bias induced by the impulse response truncation.
Atom induces the highest amount of bias with direct l1-norm regularization. The proposed
method REB imposes more regularization than EB with an additional sparsity regularization in
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3.4 Error Bounds with Unknown Hyperparameters

hyperparameter tuning, but less regularization compared to the direct sparsity regularization on
the impulse response estimation as in Atom. This characteristic leads to an appropriate balance in
the bias-variance trade-off as seen from the MSE values. This result agrees with the discussion in
Remark 3.1 and Section 3.3.2.

3.4 Error Bounds with Unknown Hyperparameters

3.4.1 Pitfalls with Error Bounds from Posterior Covariances

The kernel-based method has shown remarkable performance in linear system identification, in
terms of the nominal estimate (3.6). However, the stochastic error bound (3.10) is only rigorously
valid when considering a random impulse response model subject to an exact prior distribution
with exact hyperparameters. On the other hand, in practical system identification applications, a
fixed plant is usually considered, and hyperparameters are estimated as the most probable ones if
the impulse response is drawn from the prior distribution with the assumed structure. When the
estimated hyperparameters η̂ are used, directly using (3.10) to provide a stochastic model for a
fixed plant can be problematic, as shown in the following example.

Example 3.1. (Error bounds with estimated hyperparameters) Consider two second-order
systems

G3(q) =
0.4888

q2−1.8q+0.92 , G4(q) =
0.0616

q2−q+0.92 , (3.27)

with two different noise levels σ2 = 0.1 and 0.5. Both systems have two poles of magnitude 0.9:
G3(q) has two real poles at 0.9; G4(q) has a pair of complex poles with a real part of 0.5. The
systems have been normalized to have anH2-norm of 1.

Stochastic models given by the error bound (3.10) with η̂ are analyzed by 1000 Monte Carlo
simulations with TC kernels. Different unit Gaussian inputs are used to generate the identification
data in each run. Figure 3.2 shows the empirical probabilities of the error bounds containing
the true impulse responses with δ = 0.1 and identification parameters N = 200 and ng = 50.
Table 3.2 shows the empirical probabilities of violating the element-wise bounds.

Table 3.2: Empirical probability of bound violations and standard deviations of hyperparameter
estimation.

δ = 0.1 % bound violations STD(ĉK) STD(λ̂K)

(a) G3,σ
2 = 0.1 13.2% 0.0052 0.0069

(b) G4,σ
2 = 0.1 29.8% 0.2191 0.0204

(c) G3,σ
2 = 0.5 24.6% 0.0010 0.0313

(d) G4,σ
2 = 0.5 60.1% 0.0242 0.0373

It can be seen that except for the case of G3(q) with low noise, the magnitudes of the errors are
significantly underestimated in the other three cases, with bound violation probabilities much
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Figure 3.2: Empirical probability of error bounds containing the true parameters using estimated
hyperparameters. l: index of the impulse response vector.

larger than the target value of δ = 0.1. This indicates that the error bounds based on estimated
hyperparameters are unreliable when the impulse response is lightly damped and/or the SNR is
poor.

To investigate the reason why the error bounds are inaccurate under these cases, Table 3.2
also shows the standard deviations of the estimated hyperparameters, and Figure 3.3 plots the
marginal probability density (3.13) with respect to the hyperparameters in one representative
simulation. It can be seen that in cases (b), (c), and (d), where the error bounds based on
estimated hyperparameters are inaccurate, the variances of the estimated hyperparameters are
more significant than those in case (a), and the marginal probability density is not strongly
localized. This suggests that the estimated hyperparameters can be inaccurate, leading to the
error bounds’ misspecification.

3.4.2 Worst-Case Posterior Variances

To solve the problem of quantifying error bounds with unknown hyperparameters, we first bound
the true hyperparameters using the measured data. Consider the following assumption.

Assumption 3.1. The kernel structure K(η) is assumed to be correct with unknown true hyper-
parameters η0. The hyperprior p(η) is known.

The hyperprior p(η) can be selected as a uniform distribution if no additional knowledge about the
hyperparameters is available. The distribution of hyperparameters conditioned on the measured
data is given by

p(η |ud ,yd) =
p(yd |ud ,η)p(η)∫

η∈E p(yd |ud ,η)p(η)dη
, (3.28)

42



3.4 Error Bounds with Unknown Hyperparameters

Figure 3.3: Marginal probability density with respect to hyperparameters. (a) G3,σ
2 = 0.1, (b)

G4,σ
2 = 0.1, (c) G3,σ

2 = 0.5, (d) G4,σ
2 = 0.5. Yellow: higher value, blue: lower value.

where p(yd |ud ,η) is given in (3.13). This leads to

P(η0 ∈ [η1,η2]) =

∫
η∈[η1,η2]

p(yd |ud ,η)p(η)dη∫
η∈E p(yd |ud ,η)p(η)dη

=: 1−δ
′, (3.29)

where ηi := [cK,i λK,i]
⊤, i = 1,2 and

[η1,η2] :=
{

η = [cK λK ]
⊤ |cK,1 ≤ cK ≤ cK,2,λK,1 ≤ λK ≤ λK,2

}
(3.30)

is a rectangular set. By choosing a small δ ′, (3.29) establishes a high-probability set for the true
hyperparameters.

Then, we investigate the effect of hyperparameters on the stochastic model to find the worst-case
posterior variances Σl,l within the set [η1,η2]. A uniform bound is derived analytically using the
following lemma for DI and TC kernels.

Lemma 3.2. The matrix inequality Σ(η1)≼ Σ(η2) is satisfied when
(

λK,2
λK,1

)γ

cK,1 ≤ cK,2, λK,1 ≤
λK,2, with γ = 0 for DI kernels and γ =−1/ lnλK,2−1 for TC kernels.

Proof. The result is trivial for DI kernels. For TC kernels, define M(mn) ∈ Rn×n, mn :=
[m1 m2 . . . mn]

⊤ with Mi, j(mn) := mmax(i, j). We first prove that

det M(mn) = mn

n−1

∏
i=1

(mi−mi+1) . (3.31)
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For n = 1,2, det M(m1) = m1, det M(m2) = m2(m1−m2) satisfy (3.31). Suppose (3.31) is
satisfied for n = l−1, l. Define

ml\i = [m1 . . . mi−1 mi+1 . . . ml]
⊤ . (3.32)

From the definition of the determinant, we have det M(ml) = ml ∑
l
i=1(−1)l−i det M(ml\i).

For n = l +1,

det M(ml+1) = ml+1

(
det M(ml)+

l

∑
i=1

(−1)l+1−i det M(ml+1\i)

)

= ml+1

(
1− ml+1(ml−ml+1)

ml
−

m2
l+1

m2
l

)
det M(ml)

= ml+1

l

∏
i=1

(mi−mi+1)

(3.33)

satisfies (3.31). This proves (3.31) by induction.

Using Sylvester’s criterion, M(mn) is positive semidefinite iff det M(ml)≥ 0,∀ l = 1, . . . ,n. This
requires

mi−mi+1 ≥ 0, ∀ i = 1, . . . ,n−1. (3.34)

Define η ′2 :=
[(

λK,2
λK,1

)γ

cK,1 λK,2

]⊤
. Since

(
λK,2
λK,1

)γ

cK,1 ≤ cK,2, we have K(η2)≽ K(η ′2). Define

M(mng) := K(η ′2)−K(η1) by choosing mi =
(

λK,2
λK,1

)γ

cK,1λ i
K,2−cK,1λ i

K,1. So K(η ′2)−K(η1)≽ 0
is equivalent to

λ
1+γ

K,2 −λ
1+γ

K,1 ≥ λ
2+γ

K,2 −λ
2+γ

K,1 ≥ ·· · ≥ λ
ng+γ

K,2 −λ
ng+γ

K,1 . (3.35)

Note that f (x) = λ x
K,2−λ x

K,1 is monotonically non-increasing for x≥−1/ lnλK,2, ∀λK,2 ≥ λK,1.
This indicates that (3.35) is satisfied for γ ≥−1/ lnλK,2−1. Therefore, K(η2)≽ K(η ′2)≽ K(η1)

for γ =−1/ lnλK,2−1, which leads to(
Φ
⊤

Φ+σ
2K−1(η2)

)−1
≽
(

Φ
⊤

Φ+σ
2K−1(η1)

)−1
. (3.36)

This directly proves the lemma.

From Lemma 3.2, we have

Σ(η0)
1−δ ′

≼ σ
2
(

Φ
⊤

Φ+σ
2
(

λK,1

λK,2

)γ

K−1(η2)

)−1

=: Σ̄. (3.37)

So, the posterior variances with true hyperparameters η0 can be uniformly bounded by

Σl,l(η0)
1−δ ′

≤ Σ̄l,l =: σ
2
l . (3.38)
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For a general kernel structure, the bound can be computed element-wise by directly solving the
optimization problem:

σ
2
l = max

η∈[η1,η2]
Σl,l(η). (3.39)

3.4.3 Stochastic Error Bounds

We are now ready to present the main result of this section.

Theorem 3.1. Under Assumption 3.1, the impulse response estimate (3.6) with estimated hyper-
parameters η̂ admits the following stochastic element-wise error bound:

P(|ĝl(η̂)−gl| ≤ µ̄σl)≥ (1−δ )(1−δ
′), (3.40)

where µ̄ := µδ +
2
σ

∥∥yd
∥∥

S and S := Φ
(
Φ⊤Φ

)−1
Φ⊤, if η̂ ∈ [η1,η2].

Proof. The estimation error is decomposed as

|ĝl(η̂)−gl| ≤ |ĝl(η̂)− ĝl(η0)|+ |ĝl(η0)−gl| (3.41)
1−δ

≤ |ĝl(η̂)− ĝl(η0)|+µδ

√
Σl,l(η0), (3.42)

where the two terms are due to misspecified hyperparameters and measurement noise, respectively.

Define the posterior kernel

kp
η(x,x

′) := kη(x,x′)−kx(η)

(
K(η)+σ

2
(

Φ
⊤

Φ

)−1
)−1

kx(η)⊤. (3.43)

Note that kp
η(i, j) = Σi, j(η). The associated RKHS is denoted asHp

η . It is easy to see that g⋆η(·)∈
Hp

η and
∥∥g⋆η(·)

∥∥2
Hp

η

= ĝ⊤(η)Σ−1(η)ĝ(η). Note the reproducing property of the RKHS g⋆η(x) =

⟨g⋆η(·),k
p
η(·,x)⟩Hp

η
, where ⟨·, ·⟩Hp

η
denotes the inner product inHp

η . From the Cauchy–Schwarz

inequality, we have
∣∣g⋆η(x)∣∣≤ kp

η(x,x)
1
2
∥∥g⋆η(·)

∥∥
Hp

η

. This leads to

|ĝl(η)|2 ≤ Σl,l(η)ĝ⊤(η)Σ−1(η)ĝ(η)

=
1

σ2 Σl,l(η)
(

yd
)⊤

Φ

(
Φ
⊤

Φ+σ
2K−1(η)

)−1
Φ
⊤yd

≤ Σl,l(η)
∥∥yd
∥∥2

S /σ
2.

(3.44)

Since η̂ ∈ [η1,η2], we have Σl,l(η̂)≤ σ2
l . This leads to |ĝl(η̂)|2 ≤ σ2

l
σ2

∥∥yd
∥∥2

S and |ĝl(η0)|2
1−δ ′

≤
σ2

l
σ2

∥∥yd
∥∥2

S. Then,

|ĝl(η̂)− ĝl(η0)| ≤ |ĝl(η̂)|+ |ĝl(η0)|
1−δ ′

≤ 2σl

σ

∥∥yd
∥∥

S . (3.45)
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From (3.29), (3.38), (3.39), we have µδ

√
Σl,l(η0)

1−δ ′

≤ µδ σl . This, together with (3.42) and
(3.45), proves Theorem 3.1.

Theorem 3.1 provides high-probability error bounds with unknown hyperparameters by replacing
the estimated posterior variance Σl,l with its worst-case counterpart σ2

l . We note the following
remarks on Theorem 3.1.

Remark 3.3. For DI and TC kernels, by modifying the last inequality in (3.44), the bound in

Theorem 3.1 can be tightened by choosing S = Φ

(
Φ⊤Φ+σ2

(
λK,1
λK,2

)γ

K−1(η2)
)−1

Φ⊤.

Remark 3.4. Theorem 3.1 still holds when more hyperparameters are involved with minor
modifications to Lemma 3.2 if needed. So, the proposed approach can be extended to consider
unknown noise levels and ARX models with an additional kernel on the autoregressive output
terms.

Remark 3.5. Although Theorem 3.1 improves the bounds in Capone et al. (2022), the constant µ̄

is still quite conservative, mainly due to the triangle equality in (3.45). Such conservativeness is
often observed in GP error bounds, so a much smaller scaling factor is often selected in practical
applications (Capone et al., 2022; Berkenkamp et al., 2017; Umlauft et al., 2017), despite that
this invalidates the theoretical guarantees. As will be seen in Section 3.4.5, µ̄ = µδ is used in
numerical simulation.

3.4.4 Selecting the Set of Hyperparameters

Theorem 1 holds for any choices of η1,η2 that satisfy (3.29) and η̂ ∈ [η1,η2]. To obtain the
tightest bound, η1,η2 can be selected by optimization. For DI and TC kernels, the total magnitude
of the bounds ∑

ng−1
l=0 µ̄σl can be minimized. From (3.37) and (3.38), this is equivalent to solving

min
η1,η2

(
λK,2
λK,1

)γ

tr(K(η2)) (3.46a)

s.t.

∫
η∈[η1,η2]

p(yd |ud ,η)p(η)dη∫
η∈E p(yd |ud ,η)p(η)dη

≥ 1−δ
′, η̂ ∈ [η1,η2]. (3.46b)

For a general kernel structure with element-wise bound (3.39), η1,η2 can be selected individually
for each l by solving the minimax problem:

σ
2
l = min

η1,η2
max

η∈[η1,η2]
Σl,l(η) s.t. (3.46b). (3.47)

The algorithm to obtain the error bounds with unknown hyperparameters is summarized in
Algorithm 3.1.
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Algorithm 3.1 Stochastic error bounds with unknown hyperparameters

1: Estimate η̂ and obtain ĝ(η̂) from (3.6).
2: Calculate η1,η2 by solving (3.46) or (3.47).
3: Calculate σl , l = 0, . . . ,ng−1 from (3.38) or (3.39).
4: Obtain the element-wise error bounds from (3.40).

3.4.5 Numerical Results

The proposed bound is applied numerically by considering the same problem as in Example 3.1.
Again, the practical scenario with fixed impulse responses is considered. The error bound (3.10)
with estimated hyperparameters analyzed in Section 3.4.1 is termed the vanilla kernel bound,
whereas the proposed bound in Section 3.4.3 is called the robust kernel bound. The least-squares
bound (3.4) is also compared.

For computational efficiency, the optimization problems to find η1,η2 are solved by discretizing
η . The nominal estimate and the estimated hyperparameters are obtained by impulseest in
MATLAB. The inner problem in (3.47) is solved by fmincon in MATLAB. For the robust kernel
bound, we select δ ′ = 0.1 and µ̄ = µδ .

Figure 3.4 compares the performance of different error bounds with a TC kernel design. For each
case, the left figure shows representative identification results in one simulation, whereas the
right figure shows the empirical probability of error bounds containing the true parameters from
1000 Monte Carlo simulations. The results show that the proposed robust kernel bounds are more
conservative than the vanilla ones, especially under high noise. Still, they are much more reliable,
with much higher empirical probabilities of containing the true parameters. On the other hand,
the robust kernel bounds are still much tighter than the least-squares bounds.

Figure 3.5 shows the empirical probability with a SS kernel design. The robust kernel bounds are
derived by selecting σl from (3.47). Similar results to the TC kernel case are obtained, where the
robust kernel bounds are much more reliable than the vanilla kernel bounds.

3.5 Summary

This chapter investigates two problems in the kernel-based identification of linear systems. The
first part demonstrates that a low-order model can be obtained in kernel-based identification
with appropriate multiple kernel design. Using optimal kernel design for first-order systems,
low-complexity models correspond to sparse hyperparameter selection, which is imposed by
a sparse hyperprior. Compared to direct l1-norm regularization, this method achieves a more
favorable bias-variance trade-off.

In the second part, a practical approach is provided to obtaining a reliable stochastic model cen-
tered around the nominal estimate of kernel-based system identification. Instead of constructing
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Figure 3.4: Comparison of different error bounds with TC kernels. (a) G3,σ
2 = 0.1, (b) G4,σ

2 =
0.1, (c) G3,σ

2 = 0.5, (d) G4,σ
2 = 0.5. Left: representative element-wise error bounds, right:

the empirical probability of error bounds containing the true parameters. l: index of the impulse
response vector.
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3.5 Summary

error bounds with estimated hyperparameters, which are too optimistic, the error bounds can
be obtained from the worst-case posterior variances within a high-probability set of the true
hyperparameters.
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Part IINonparametric Prediction and
Data-Driven Predictive Control
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4 Nonparametric Trajectory Prediction
with Stochastic Data

As discussed in Section 1.3, this chapter investigates the problem of directly predicting system
responses from collected trajectory data. Based on the so-called Willems’ fundamental lemma
(WFL) (Willems et al., 2005; Markovsky and Dörfler, 2023; van Waarde et al., 2020), this
problem has been well-studied for linear systems (Markovsky et al., 2005b; Markovsky and
Rapisarda, 2008) when deterministic data are available with equivalence to the model-based
predictors under mild conditions on the data quality (van Waarde et al., 2020). These results are
summarized in Section 4.1.1.

However, one critical problem with the WFL is that the corresponding predictor becomes ill-
defined when any uncertainty is present in the collected data. Optimal control design can still be
conducted despite the ill-definedness by using the regularization technique to design the control
cost under the robust control framework (Berberich et al., 2021; Huang et al., 2023; Coulson et al.,
2022). Such methods are known as direct data-driven predictive control (DDPC) or data-enabled
predictive control (DeePC) (Coulson et al., 2019). In this thesis, however, we focus on explicitly
obtaining a well-defined nonparametric predictor in the presence of stochastic uncertainty, which
is known as indirect DDPC. As will be detailed in Section 4.1.2, broadly speaking, algorithms to
design such predictors can be divided into two categories, namely 1) by denoising the data and 2)
by regularizing the predictor.

For the first category, the critical condition to guarantee the well-definedness of the predictor
without regularization is the existence of a low-rank Hankel-structured data matrix. In other
words, the data denoising problem can be equivalently posed as a low-rank Hankel matrix
denoising problem. Although the optimal low-rank approximation of an unstructured matrix
is well-known via singular value decomposition (SVD), the low-rank Hankel matrix denoising
problem faces two additional issues. First, in matrix denoising, one is interested in minimizing the
MSE of the estimate with respect to the noise-free matrix. However, the low-rank approximation
does not guarantee any optimality on this since it also approximates the noise matrix. Remedies
to this problem are investigated in Gavish and Donoho (2014, 2017); Nadakuditi (2014); Josse
and Sardy (2015). Second, the optimal approximation does not preserve the Hankel structure.
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Methods to preserve structural constraints in matrix approximation are summarized in Markovsky
and Rapisarda (2008). Section 4.2 investigates the low-rank Hankel matrix denoising problem
by combining approaches concerning both issues and comparing the performances of different
algorithms numerically.

For the second category, the subspace predictor (Favoreel et al., 1999; Sedghizadeh and Beheshti,
2018) is commonly used in the literature, which can be interpreted as estimating a multi-step-
ahead ARX model with close relations to the subspace identification algorithm (Fiedler and
Lucia, 2021; Dörfler et al., 2023; Breschi et al., 2023). However, this predictor is not optimal
for finite data length under realistic uncertainty assumptions. Instead, Section 4.3 proposes a
maximum likelihood estimation (MLE) framework to obtain the regularized predictor under
general uncertainty assumptions. The proposed predictor is named the signal matrix model
(SMM). The SMM is shown to obtain more accurate output predictions than the subspace
predictor. This predictor can be used to estimate the impulse response in system identification by
conducting prediction with an impulse. This impulse response estimation approach guarantees an
unbiased estimate without truncation errors or the requirement of knowing the input history. It
demonstrates performance improvements over the least-squares estimate numerically. Since its
proposal, SMM has been applied to other works as a nonparametric trajectory predictor, such as
Furieri et al. (2023); Kergus and Gosea (2022). Input design for SMM is discussed in Iannelli
et al. (2021a,b).

Finally, the prediction error of a general class of regularized predictors is quantified in Section 4.4.
This provides confidence regions of output predictions, which is helpful to enforce safety-critical
constraints in control design, as will be detailed in Chapter 5. The validity of the derived
confidence regions is verified by numerical examples. In addition, this statistical framework
allows approximate computation of the MSE of the predictor. In this way, another stochastic data-
driven predictor can be designed to be optimal for minimizing the MSE. It is shown numerically
that this minimum MSE predictor obtains marginally smaller prediction errors than the other
stochastic predictors under high SNRs.

4.1 Willems’ Fundamental Lemma and Data-Driven Prediction

4.1.1 Deterministic Data-Driven Prediction

Built originally on the notion of the persistency of excitation, the Willems’ fundamental lemma
(WFL) shows that all the behaviors of a linear system can be captured by a single sufficiently
informative trajectory of the system when no uncertainty is present. This lemma was initially
proposed in the context of behavioral system theory (Willems et al., 2005; Willems and Polderman,
1997), where systems are characterized by the subspace that contains all possible trajectories,
with a more general version presented recently (Markovsky and Dörfler, 2021). It was later
rephrased in the state-space context (De Persis and Tesi, 2020) and extended to multiple datasets
(van Waarde et al., 2020).
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In detail, we truncate the data sequence (ud ,yd) into length-L sections:

zd
i := col

(
ud

i , . . . ,u
d
i+L−1,y

d
i , . . . ,y

d
i+L−1

)
∈ R(nu+ny)L, (4.1)

where i = 1, . . . ,N−L+ 1. Define the following mosaic Hankel matrix by concatenating the
trajectory sections column-wise:

Z :=
[
zd

1 zd
2 · · · zd

M

]
:=



ud
1 ud

2 · · · ud
M

...
...

. . .
...

ud
L ud

L+1 · · · ud
N

yd
1 yd

2 · · · yd
M

...
...

. . .
...

yd
L yd

L+1 · · · yd
N


=:

[
U
Y

]
∈ R(nu+ny)L×M, (4.2)

where M := N−L+1. The data matrix Z is termed the signal matrix in what follows.

Due to linearity, any linear combination of the length-L trajectories zd
i is still a possible trajectory

of the system. On the other hand, all possible length-L trajectories of the LTI system (1.2)
formulate a subspace of (nuL+ nx) dimensions since all nuL inputs can be freely selected as
well as the initial state of nx dimensions. Therefore, if the collected length-L trajectories cover
all (nuL+nx) dimensions, i.e., rank(Z) = nuL+nx, their linear combinations cover all possible
trajectories. Then, by selecting L = L0 +L′, the input-output mapping (1.9) can be characterized
implicitly by the condition col(uini,u,yini,y) ∈ range(Z).

The above idea is presented formally in the following theorem, based on the WFL for finite-
dimensional LTI systems. These results hold exactly only when the system is noise-free, i.e.,
∀t,vt = 0.

Theorem 4.1. Consider the finite-dimensional LTI system (A,B,C,D) in (1.2). Let
(
ud

i ,x
d
i ,y

d
i
)N

i=1
be a noise-free input-state-output trajectory of the system. The following holds iff the signal
matrix Z defined in (4.2) satisfies

rank(Z) = nuL+nx. (4.3)

1. The matrix col(Xini,U) has full row rank, where Xini :=
[
xd

1 xd
2 · · · xd

M

]
collects the

initial states of the trajectory sections (Corollary 2 in Willems et al. (2005), Theorem 1(i)
in van Waarde et al. (2020), Lemma 1 in De Persis and Tesi (2020)).

2. The pair (ui,yi)
L−1
i=0 is an input-output trajectory of the system iff there exists g ∈ RM , such

that col(u0, . . . ,uL−1,y0, . . . ,yL−1) = Zg (Theorem 1 in Willems et al. (2005), Theorem 1(ii)
in van Waarde et al. (2020), Lemma 2 in De Persis and Tesi (2020)).

3. The vector y := col(y0, . . . ,yL′−1) is the unique output trajectory of the system with imme-
diate past input-output trajectory uini := col(u−L0 , . . . ,u−1), yini := col(y−L0 , . . . ,y−1) and
given input trajectory u := col(u0, . . . ,uL′−1), where L0 is no smaller than the observability
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index l of the system and L = L0 +L′, iff there exists g ∈ RM, such that

col(uini,u,yini,y) = Zg (4.4)

(Proposition 1 in Markovsky and Rapisarda (2008)).

Remark 4.1. The signal matrix Z can be alternatively constructed as

Z :=
[
zd

1 zd
L+1 · · · zd

(M−1)L+1

]
, (4.5)

where M := ⌊N/L⌋, which is known as the Page construction (Damen et al., 1982). As will be
seen in Remark 4.5, this construction leads to simpler noise statistics with no repeated elements
at the expense of poor data efficiency. It is useful in, for example, input design (Iannelli et al.,
2021a). The length-L trajectories zd

i can also come from independent experiments. It was shown
in van Waarde et al. (2020) that similar results to Theorem 4.1 still hold for Page matrices and/or
multiple experiments.

In the original work (Willems et al., 2005), instead of the rank condition (4.3), more conservative
conditions are used, namely, the matrix pair (A,B) is controllable and the input is persistently
exciting of order (L+nx). These constraints are relaxed in Theorem 1 of Yu et al. (2021) before
the necessary and sufficient rank condition is finally given in Corollary 19 of Markovsky and
Dörfler (2023). A necessary condition for the rank condition to hold is M = N−L+1≥ nuL+nx,
which offers a lower bound on the trajectory length. Despite its conservativeness, the persistency
of excitation test is still useful when the data are contaminated by uncertainties and the signal
matrix loses the low-rank structure, as will be seen in Section 4.1.2. So, we still define persistency
of excitation as follows.

Definition 4.1. A signal trajectory (xi)
N
i=1 ∈ Rn×{1, . . . ,N} is said to be persistently exciting of

order L if

X :=

x1 x2 · · · xM
...

...
. . .

...
xL xL+1 · · · xN

 ∈ RnL×M (4.6)

has full row rank (Willems et al., 2005).

In Theorem 4.1, parts 1 and 2 state the original Willems’ fundamental lemma (WFL), whereas
part 3 directly motivates the design of a deterministic data-driven predictor. Define a partition of
Z as Z =: col(Up,U f ,Yp,Yf ), where Up ∈ RnuL0×M, U f ∈ RnuL′×M, Yp ∈ RnyL0×M, Yf ∈ RnyL′×M.
The deterministic data-driven predictor can be constructed by a two-step approach with g as the
intermediate parameter, as shown in Algorithm 4.1. Although any solution to (4.9) is applicable
(Proposition 1 in Markovsky and Rapisarda (2008)), the pseudoinverse solution is the most
commonly used, which leads to the following input-output mapping:

y = FZ(u;uini,yini) = Yf gpinv, (4.7)
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where
gpinv := col(Up,U f ,Yp)

† col(uini,u,yini) . (4.8)

Algorithm 4.1 Deterministic data-driven predictor (Markovsky et al., 2005b)

1: Given: signal matrix Z
2: Input: uini,yini,u
3: Solve the linear system

col(Up,U f ,Yp)g = col(uini,u,yini) (4.9)

for g.
4: Output: y = Yf g

4.1.2 Towards Stochastic Data-Driven Trajectory Prediction

A strong assumption in Theorem 4.1 is that the data are deterministic without uncertainties, under
which the signal matrix is rank deficient with (4.3). This guarantees that, though (4.9) is a highly
underdetermined linear system when a large dataset is available, the input-output mapping from u
to y is still well-defined, i.e., the prediction y is unique for any solution to (4.9). However, when
the data are contaminated, the signal matrix Z has full row rank almost surely, and thus for any
u and y, there exists g that satisfies (4.4) almost surely. This means that the output prediction
from Algorithm 4.1 can be any trajectory by manipulating the solution of g, so the input-output
mapping becomes ill-defined. It is also not clear if satisfying condition (4.9) is still necessary
with stochastic data since Theorem 4.1.3 does not hold exactly.

To recover the well-definedness of the predictor in the presence of stochastic uncertainties, two
types of modifications to Algorithm 4.1 are investigated.

Structured low-rank matrix denoising. This method formulates a structured low-rank matrix
denoising problem to recover the rank condition (4.3) and thus the well-definedness of the
predictor.

The general structured low-rank matrix denoising problem is formulated as follows. For a set
of structured matrix Mm×n ⊆ Rm×n, consider the problem of estimating an unknown matrix
X ∈Mm×n from a noisy measurement X̃ = X +σV , where σ is the noise level and V ∈Mm×n

is a stochastic noise matrix with zero mean. It is known that the unknown matrix X has the
low-rank property rank(XΠ) = r, where Π ∈ Rn×n is a known transformation matrix. Without
loss of generality, let r < m ≤ n and β := m/n ∈ (0,1]. To obtain the optimal estimate of the
noise-free matrix X , we are interested in minimizing the MSE of the estimate:

MSE
(
X̂
)

:= E
(∥∥X− X̂

∥∥2
F

)
, (4.10)

where the estimate X̂ is a function of the measurement X̃ . This problem will be referred to as the
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denoising problem.

In this thesis, we are restricted to denoising output trajectories of SISO systems and consider
the case where Mm×n is the set of m-by-n Hankel matrices. In particular, let Y 0 be constructed
similar to Y but with noise-free outputs (yd,0

i )N
i=1 instead of contaminated outputs

(
yd

i
)N

i=1. Since
rank(col

(
U,Y 0

)
) = nuL+nx, the projection of Y 0 onto the null space of U has a low rank, i.e.,

the low-rank Hankel matrix denoising problem can be formulated with

X = Y 0, X̃ = Y, Π = Π
⊥
U , r = nx, (4.11)

where Π⊥U spans the null space of U and can be calculated as Π⊥U = I−U⊤(UU⊤)−1U .

Remark 4.2. One special case of the output denoising problem is impulse response denoising.
Consider the case where the output trajectory to be denoised is the first-N impulse response
coefficients (gi)

N−1
i=0 of the system, measured with additive noise: ĝi = gi + vi. Similar to Y 0

and Y , construct Hankel matrices with (gi)
N−1
i=0 and (ĝi)

N−1
i=0 and denote them by Hg and Hĝ,

respectively. The matrix Hg is rank-deficient with rank(Hg) = nx (Fazel et al., 2003). This leads
to the denoising problem with

X = Hg, X̃ = Hĝ, Π = I, r = nx. (4.12)

This special case has particular applications in frequency-domain subspace identification (McK-
elvey et al., 1996) and model order reduction (Markovsky et al., 2005a).

This problem is also studied in the intersection algorithm of subspace identification (Moonen
et al., 1989), where a low-order subspace of the signal matrix corresponding to a low state
dimension is sought. Although a state-space realization is not required for data-driven prediction,
prediction results with the denoised signal matrix are equivalent to those of the model-based
predictor with state-space models identified by subspace identification (Fiedler and Lucia, 2021).

Details about solving the denoising problem are investigated in Section 4.2.

Indirect data-driven prediction. This method aims to obtain a unique predictor by finding a
unique solution to the intermediate vector g. This turns out to be a difficult problem. The output
noise leads to uncertainties in both the output signal matrix Y and the output initial condition yini.
So the input equation col(Up,U f )g = col(uini,u) in (4.9) still holds exactly, but the past output
equation Ypg = yini includes noise on both sides. So, if we pose the problem as a parameter
estimation problem of g, it becomes an error-in-variables problem. To make matters worse, there
does not exist a unique true parameter, but a subspace of true parameters satisfying (4.9) in the
noise-free case, and the prediction accuracy is evaluated on a projection (Yf ) of g which is also
unknown.

Despite the difficulty, this problem is often approached by solving optimization problems that
find the optimal g with respect to some statistical or empirical objectives. This type of predictors
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usually shares the following form:

ŷ = FZ(·) = Yf g, (4.13a)

col(Up,U f ,Yp)g = col(uini,u,yini +δ ) . (4.13b)

Here, the notation ŷ is used to indicate that the stochastic prediction is only an estimate of the
true output trajectory y. The slack variable δ is introduced to compensate for the error in both Yp

and yini. The predictors then propose different strategies for balancing the magnitude of g and the
slack variable δ , a particular form of which is

FZ(·) = Yf argmin
g
∥δ∥2

S +λ ∥g∥2
2 s.t. (4.13b), (4.14)

where S ∈ SnyL0
++ and λ ∈ R++ are the design parameters. With an abuse of notation, argming

denotes the optimal solution of g for the program depending on both g and δ . Note that the
optimization problem (4.14) is a strongly convex quadratic programming (QP) problem with only
equality constraints, the optimality conditions of which are:[

F UT

U 0

][
g
ν

]
=

[
Y T

p Syini

ũ

]
, (4.15)

where ũ := col(uini,u), F := λ I+Y⊤p SYp, and ν ∈ RnuL is the Lagrange multiplier. The closed-
form solution is thus given by

g⋆ = R1 ũ+R2 yini, (4.16)

where

R1 := F−1U⊤(UF−1U⊤)−1, (4.17)

R2 :=
(

F−1−F−1U⊤(UF−1U⊤)−1UF−1
)

Y⊤p S. (4.18)

If the pseudoinverse solution (4.7) is still used in the stochastic case, it corresponds to choosing
S = I and λ → 0+, and can be interpreted as the least-squares estimate of a linear mapping:

FZ(·) = FZ col(uini,u,yini) , (4.19)

where
FZ := argmin

F

∥∥Yf −F col(Up,U f ,Yp)
∥∥2

F , (4.20)

or the solution to the least-norm problem:

gpinv = argmin
g
∥g∥2

2 s.t. (4.9). (4.21)

However, this predictor fails to appropriately encode the effects of noise in the output signal
matrix Y with the least-squares problem (4.20) considering only the noise in Yf but not in Yp.
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This is known as the subspace predictor (Favoreel et al., 1999; Sedghizadeh and Beheshti, 2018;
Huang et al., 2019; Fiedler and Lucia, 2021).

Another existing design proposed in Lian et al. (2023) finds the vector g that minimizes the
Wasserstein distance (WD) between the stochastic distribution of yini and that of Ypg. An
approximation of this objective leads to a design of

S = I, λ = nyL0σ
2. (4.22)

Section 4.3 presents the indirect data-driven predictor design using the MLE principle.

Remark 4.3. The ideas in this section can be extended to include disturbances in the state-space
model (1.2), i.e., {

xt+1 = Axt +But +Ewt ,

yt = Cxt +Dut + vt ,
(4.23)

where wt ∈ Rnw denotes the disturbances. The disturbances wt can be treated as additional
uncontrolled inputs. In many applications, the offline disturbance trajectories can be obtained
retroactively. Suppose the disturbance sequence wd :=

[
wd

1 wd
2 . . . wd

N
]⊤ is collected, in addition

to the input-output sequence. The Hankel matrix W can be constructed similar to U or Y in (4.2)
by replacing ud or yd with wd . Define w := col(w−L0 , . . . ,w−1,w0, . . . ,wL′−1) as the immediate
past and future disturbance sequence of length L. Then, all the results presented above can be
extended by replacing U with the augmented input signal matrix col(U,W ) and col(uini,u) with
the augmented input sequence col(uini,u,w).

4.2 Stochastic Data-Driven Prediction by Matrix Denoising

The problem of estimating an unknown low-rank matrix from noisy measurements has been a
long-standing problem, under the name of principal component analysis (Abdi and Williams,
2010) or proper orthogonal decomposition (Berkooz et al., 1993). A well-known technique to
solve this problem is the truncated singular value decomposition (TSVD), which approximates
the data matrices by only keeping the most significant singular values corresponding to the true
rank of the noise-free matrix. According to the Eckart-Young-Mirsky (EYM) theorem (Eckart
and Young, 1936), it is the best low-rank approximation to the data in terms of both the Frobenius
norm and the spectral norm. When the true rank of the underlying low-rank matrix is unknown,
it is still common to rely on the EYM theorem by turning the problem into estimating the true
rank, e.g., Bauer (2001) in subspace identification. The simplest method is to look for a sudden
decrease in the scree plot (a plot of singular values in decreasing magnitude). Information criteria
(Akaike, 1974) and cross-validation techniques (Stoica et al., 1986) are also widely used.

However, an often neglected aspect of the EYM theorem is that it only provides the optimal low-
rank approximation to the noisy data matrix but does not guarantee any optimality of minimizing
the MSE of the estimate with respect to the noise-free matrix (Nadakuditi, 2014). In other words,
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4.2 Stochastic Data-Driven Prediction by Matrix Denoising

matrix denoising is not the same as matrix approximation.

To solve the low-rank denoising problem, the two-step approach of first determining the rank of the
estimate and then applying TSVD can be interpreted as singular value hard thresholding, where
the singular values are not truncated to obtain a fixed rank but according to a specified threshold.
This method has been effective in multiple matrix estimation problems (Chatterjee, 2015). Gavish
and Donoho (2014) show that, for unstructured matrices, there exists an optimal choice of the hard
threshold asymptotically, which is also effective with finite-dimensional matrices numerically.
The hard thresholding function can be generalized to a general shrinkage function on the singular
values. The asymptotically optimal shrinkage function for unstructured matrices is developed in
Gavish and Donoho (2017). Data-driven and adaptive shrinkage algorithms are also proposed in
Nadakuditi (2014); Josse and Sardy (2015).

Another difficulty in exploiting the low-rank prior in estimation is incorporating the structural
constraints. Unlike the EYM theorem, there is no closed-form solution or convex formulation for
the structured low-rank approximation (SLRA) problem (Markovsky and Rapisarda, 2008). In
existing works, nonlinear optimization algorithms (Markovsky and Usevich, 2013; Park et al.,
1999), iterative structural approximation (Cadzow, 1988; Li et al., 1997; Wang et al., 2019),
and convex relaxation (Fazel et al., 2001; Smith, 2014) are applied to obtain locally optimal or
suboptimal solutions to the problem. Structure constraints pose additional difficulties in solving
the low-rank denoising problem as well. The results above for the denoising problem rely on the
asymptotic distribution of the singular values of the noise matrix, which is not well-studied for
most structured matrices. In this regard, Nadakuditi (2014) proposes a data-driven method to
estimate the distribution from the singular values of the data matrix.

This section first reviews existing algorithms for solving the SLRA and the unstructured low-
rank denoising problem. It is observed that when applied to the problem of denoising low-
rank generalized Hankel matrices, these two categories of algorithms improve the standard
TSVD approach from two distinct perspectives, namely enforcing structural constraints and
avoiding approximating the noise matrix. Based on this observation, a novel algorithm is
proposed to address the low-rank Hankel matrix denoising problem directly. It combines the
data-driven singular value shrinkage approach in unstructured low-rank matrix denoising and the
iterative structural approximation method in SLRA. Since rigorous statistical frameworks for
low-rank Hankel matrix denoising have not been established, we focus on a numerical analysis
perspective to assess the performance in terms of noise reduction by Monte Carlo simulation. It
is shown numerically that, when applying to the output trajectory denoising problem described in
Section 4.1.2, the proposed algorithm achieves the most significant noise reduction among all
existing SLRA and low-rank denoising algorithms under different noise levels.
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4.2.1 Structured Low-Rank Approximation

Since the true MSE depends on the unknown matrix X , practically, the estimation problem is
usually reformulated as finding the best structured rank-r approximation to the measurement X̃ :

X̂SLRA := argmin
X̂∈Mm×n

∥∥X̃− X̂
∥∥2

F

s.t. rank(X̂Π)≤ r.
(4.24)

This problem will be referred to as the approximation problem. The most well-known method to
solve this approximation problem is probably TSVD. Let

X̃Π =
m

∑
i=1

wiuivT
i (4.25)

be the SVD of X̃Π, where wi are the singular values in decreasing magnitude and ui ∈ Rm,
vi ∈ Rn are the left and right singular vectors, respectively. Then, the TSVD estimate is given by

X̂TSVD(X̃ ,Π;r) :=
r

∑
i=1

wiuivT
i + X̃(In−Π). (4.26)

For the unstructured case, i.e., Mm×n = Rm×n, Π = I, the EYM theorem (Eckart and Young,
1936) shows that X̂TSVD is the closed-form solution to (4.24).

When the matrix is structured, closed-form solutions no longer exist in general, so relaxations
or nonlinear optimization techniques are needed to solve the problem. Here, we highlight an
algorithm for solving the Hankel low-rank approximation problem by iterating the TSVD step
and a Hankel approximation step alternatingly. This method extends the algorithms in Wang
et al. (2019); Li et al. (1997) to the generalized Hankel structure. The algorithm is outlined in
Algorithm 4.2.

Algorithm 4.2 Iterative algorithm for SLRA with generalized Hankel structure

1: Input: X̃ ,Π,r,ε
2: X̃1← X̃
3: repeat
4: X̃2← X̂TSVD(X̃1,Π;r)
5: X̃1←H(X̃2)
6: until

∥∥X̃1− X̃2
∥∥< ε

∥∥X̃1
∥∥

7: Output: X̂ = X̃1

In Algorithm 4.2, H(·) is the orthogonal projector onto the set of Hankel matrices. It can be
calculated by setting all the elements along a skew diagonal to be the average value of that skew
diagonal.

In addition, two other algorithms proposed in the existing literature to solve the SLRA problem
are considered for the generalized Hankel structure. The first algorithm, proposed in Markovsky
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and Usevich (2013), decomposes the optimization problem into a least-norm inner problem and
a nonlinear outer problem and solves it by local optimization methods. The second algorithm
applies the nuclear norm heuristic of the rank constraint and formulates a regularized convex
optimization problem (Fazel et al., 2001):

X̂nuc := argmin
X̂∈Mm×n

1
2

∥∥X̃− X̂
∥∥2

F + τ
∥∥X̂Π

∥∥
∗ , (4.27)

where the nuclear norm ∥·∥∗ is defined as the sum of all singular values. For the unstructured
case, it has a closed-form solution of soft-thresholding the singular values:

X̂nuc =
m

∑
i=1

max(0,wi− τ)uivT
i . (4.28)

4.2.2 From Approximation to Denoising

Despite its wide applications, the SLRA solution X̂SLRA to the approximation problem does not
always serve as a reasonable solution to the denoising problem. Consider an extreme case when
σ → ∞. The optimal denoising solution is a zero matrix almost surely as the low-rank matrix is
overwhelmed by noise, whereas X̂SLRA approaches infinity, giving only a low-rank approximation
of the particular noise realization. This observation illustrates a critical aspect of solving the
denoising problem: the noise matrix does not only contaminate the left null space of XΠ and
inflate the zero singular values but also enters the column space of XΠ and inflates the non-zero
singular values.

In detail, let the singular values of XΠ be xi, i = 1, . . . ,m, where xi = 0 for i > r. Consider the
asymptotic framework where n→ ∞ while keeping both the aspect ratio β and the true singular
values xi constant. As proved in Theorem 2.9 of Benaych-Georges and Nadakuditi (2012), the r
largest singular values of X̃Π satisfy

lim
n→∞

wi =

{
D−1

µV
(1/x2

i ), x2
i > 1/DµV (b

+)

b, x2
i ≤ 1/DµV (b

+)
(4.29)

almost surely for i = 1, . . . ,r, where µV is the asymptotic probability measure of the empirical
singular value distribution of V Π:

µV := lim
n→∞

1
m

m

∑
i=1

δzi , zi: singular values of V Π, (4.30)

b is the supremum of the support of µV , and DµV (·) is the D-transform under µV (Benaych-
Georges and Nadakuditi, 2012). An important property of (4.29) is that the noisy singular values
are always enlarged, i.e., wi > xi, ∀xi. Therefore, in addition to setting the smallest (m− r)
singular values to zero, the r largest singular values of X̃Π need to be shrunk as well, depending
on the singular value distribution of the noise matrix. So, for the denoising problem, it makes
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sense to consider the following singular value shrinkage estimate:

X̂shrink :=
m

∑
i=1

η(wi)uivT
i + X̃(In−Π), η(wi) ∈ [0,wi] (4.31)

to counteract the effect of inflated noisy singular values.

For the unstructured case, it can be assumed that V has i.i.d. unit Gaussian entries. Then, µV is
known to follow the Marchenko-Pastur distribution (Marchenko and Pastur, 1967). In this case,
it has been proven by Gavish and Donoho (2014, 2017) that the following shrinkage law obtains
the minimum asymptotic MSE:

η(w) =


nσ2

w

√(
w2

nσ2 −β −1
)2
−4β , w > (1+

√
β )
√

nσ

0, w≤ (1+
√

β )
√

nσ

. (4.32)

In addition to the general shrinkage function (4.31), particular shrinkage functions with piecewise
linear forms are often considered. These include hard thresholding and soft thresholding functions,
which are defined as

ηH(w) = w1{w≥τH}, ηS(w) = max(0,w− τS), (4.33)

respectively. These functions correspond to TSVD with rank estimation and nuclear norm
regularization for the unstructured case. The optimal thresholds are

τH =

√
2(β +1)+

8β

β +1+
√

β 2 +14β +1
σ
√

n, (4.34)

τS = (1+
√

β )σ
√

n, (4.35)

respectively. Interestingly, these asymptotically optimal results do not require knowledge of the
true rank r. For a comparison of these shrinkage functions, see Figure 2 in Gavish and Donoho
(2017).

When the noise level σ is unknown, it can be estimated by comparing the last (m− r) singular
values of X̃Π, which are dominated by noise, to the theoretical Marchenko-Pastur distribution. In
this work, we apply a robust and consistent estimator proposed in Section III.E of Gavish and
Donoho (2014):

σ̂ :=
wmed√

n · zmed(β )
, (4.36)

where wmed is the median singular value and zmed(β ) is the median of the Marchenko-Pastur
distribution solved by the equation

∫ zmed(β )

(1−
√

β )2

√(
(1+

√
β )2− t

)(
t− (1−

√
β )2
)

2πt
dt =

1
2
. (4.37)
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4.2.3 Denoising with Generalized Hankel Structure

When V is Hankel, the assumption of i.i.d. Gaussian entries in the previous subsection is violated.
If the probability measure µV for a Hankel V is known, the optimal shrinkage law (4.32) can be
generalized as

η(w; µV ) =

−2 DµV (w)
D′µV

(w) , DµV (w)< DµV (b
+)

0, DµV (w)≥ DµV (b
+)

, (4.38)

according to Theorem 2.1 in Nadakuditi (2014). Unfortunately, to the best of our knowledge,
the empirical singular value distribution of random Hankel matrices has only been analyzed
numerically (e.g., Ghodsi et al. (2015); Smith (2014)) but lacks an analytical formulation.

So, instead of aiming to derive the optimal shrinkage law analytically, the data-driven singular
value shrinkage algorithm, OptShrink, can be applied (Algorithm 1 in Nadakuditi (2014)). This
algorithm obtains a consistent estimate of the noise singular value distribution from the last
(m− r) singular values of X̃Π. It can be considered as an extension of the noise level estimator
(4.36), where the distribution has been parametrized by noise level σ̂ with the Marchenko-Pastur
distribution for the unstructured case. Here, a nonparametric estimation of the empirical singular
value distribution is obtained. So, the data-driven shrinkage law is given by

ηDD(wi) =

{
η(wi; µ̂V (wr+1, . . . ,wm)), i = 1, . . . ,r

0, i = r+1, . . . ,m
. (4.39)

Note that this algorithm requires knowledge of the true rank r to distinguish the singular values
resulting only from noise. When the true rank is unavailable, it can be replaced with an upper
rank bound r̂ ≥ r.

In addition to the problem with the generalized Hankel noise model, the previous algorithms to
solve the denoising problem also do not guarantee the Hankel structure of the unknown matrix X .
To enforce the Hankel structure in the denoised estimate, we modify Algorithm 4.2 by replacing
the TSVD solution with the data-driven singular value shrinkage law (4.39) as follows:

Algorithm 4.3 Iterative algorithm for low-rank denoising with generalized Hankel structure

1: Input: X̃ ,Π,r,ε
2: X̃1← X̃
3: repeat
4: X̃2 ← ∑

r
i=1 η(wi; µ̂V (wr+1, . . . ,wm))uivT

i + X̃1(In−Π), where (wi)
m
i=1 are the singular

values of X̃1Π.
5: X̃1←H(X̃2)
6: until

∥∥X̃1− X̃2
∥∥< ε

∥∥X̃1
∥∥

7: Output: X̂ = X̃1
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4.2.4 Numerical Results

The performance of the algorithms discussed in the previous subsections is compared numerically
on the output trajectory denoising problem discussed in Section 4.1.2 by Monte Carlo simulation.
The algorithms are listed as follows.

1. Truncated singular value decomposition (TSVD): Equation (4.26)
2. Structured low-rank approximation by iteration (Iter): Algorithm 4.2 with ε = 10−5

3. Structured low-rank approximation by local optimization (SLRA): the SLRA package
(Markovsky and Usevich, 2014)

4. Nuclear norm regularization (Nuc): convex optimization problem (4.27) with τ selected as
the optimal soft threshold (4.35)

5. Optimal shrinkage law (Shrink): Equation (4.31) with shrinkage law (4.32)
6. Optimal hard thresholding (Hard): Equation (4.31) with hard threshold (4.34)
7. Data-driven shrinkage law (DD): Equation (4.31) with data-driven shrinkage law (4.39)
8. Iterative low-rank Hankel matrix denoising (LRHD): Algorithm 4.3 with ε = 10−5

Among these algorithms, (2)–(4) are SLRA methods, (5)–(7) are unstructured matrix denoising
methods, and (8) is the proposed method. When needed, the true rank r is assumed to be known.

Random fourth-order systems generated by the drss function in MATLAB are considered
(nx = r = 4) in Monte Carlo simulation. The number of rows is selected as m = L = 8. The
additive noise vt is considered as i.i.d. Gaussian noise with N (0,σ2). Two different noise levels
of σ2 = 0.1 and 0.01 are considered. The noise level σ is assumed unknown for the algorithms.
The trajectory length is selected as N = 96.

The performance is assessed by the following noise reduction measure:

F := 100 ·

(
1−

∥∥X− X̂
∥∥

F∥∥X− X̃
∥∥

F

)
, (4.40)

where F = 0 means no noise reduction and F = 100 means the noise-free matrix is fully recovered.
For each test case, 100 Monte Carlo simulations are conducted.

The boxplots of the noise reduction measure F are plotted in Figures 4.1. It can be seen that
the proposed iterative low-rank Hankel matrix denoising algorithm achieves the most significant
noise reduction at both noise levels. This result proves the benefit of combining the asymptotically
optimal singular value shrinkage law with structural constraints. For the most part, the other
SLRA and matrix denoising algorithms also perform much better than the TSVD approach,
except that SLRA fails to obtain a reasonable solution. This demonstrates that despite being
the optimal low-rank approximation for unstructured matrices, the performance of TSVD is not
satisfying in terms of denoising the structured low-rank matrix.

Similar simulations are also conducted for the impulse response denoising problem described in
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(b) σ2 = 0.01

Figure 4.1: Noise reduction performance for the output trajectory denoising problem.

Remark 4.2 with a shorter length of N = 40 since the impulse response decays exponentially for
stable systems. Two different noise levels of σ2 = 0.01 and 0.001 are considered. Similar results
are observed in Figure 4.2, except that SLRA works, whereas Nuc does not perform well in this
example.

4.3 Maximum Likelihood Prediction: the Signal Matrix Model

This section presents a tuning-free and well-defined stochastic data-driven predictor by maximum
likelihood estimation (MLE). Since this predictor is expressed directly in terms of the signal
matrix, we name it the signal matrix model (SMM). For simplicity of exposition, the results in the
section are stated for the SISO case, but they seamlessly hold for the MIMO case. The derivation
and the computation of the predictor are proposed in Sections 4.3.1 and 4.3.2, respectively,
followed by discussions on preconditioning for large datasets and performance analysis in
Sections 4.3.3 and 4.3.4, respectively. The predictor is applied to impulse response estimation in
Section 4.3.5.
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(b) σ2 = 0.001

Figure 4.2: Noise reduction performance for the impulse response denoising problem.

4.3.1 Derivation of the Maximum Likelihood Estimator

To develop the maximum likelihood predictor, we first need to analyze how the output noise prop-
agates in the predictor. By considering zero-mean i.i.d. Gaussian output noise, the distributions
of yini and Y are also Gaussian. In what follows, the distributions are denoted by

yini ∼N
(
y0

ini,Σyini
)
, vec(Y )∼N

(
vec
(
Y 0) ,ΣY

)
, (4.41)

where y0
ini and Y 0 =: col

(
Y 0

p ,Y
0
f

)
are noise-free versions of yini and Y , respectively, and yini is

uncorrelated with Y . Then, for a given g, the distribution of Y g =
(
gT⊗ IL

)
vec(Y ) is

Y g|g∼N

Y 0g,

[
Σp Σp f

ΣT
p f Σ f

]
︸ ︷︷ ︸

Σg

, (4.42)

where
Σg :=

(
gT⊗ IL

)
ΣY (g⊗ IL) . (4.43)

Here, the property of the Kronecker product vec(ABC) = (CT⊗A)vec(B) is used.
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Specifically, consider the following noise model:{
yd

i = yd,0
i + vd

i , vd
i ∼N (0,σ2),

yini = y0
ini +vp, vp ∼N (0,σ2

pI).
(4.44)

The propagated covariance matrix Σg is derived in the following lemma.

Lemma 4.1. When Y is constructed with the Hankel structure (4.2), (Σg)i, j = σ2Rgg(i− j),
where

Rgg(τ) :=
M−|τ|

∑
k=1

gkgk+|τ| (4.45)

is the sample autocorrelation of g without normalization and gk denotes the k-th entry of g.

Proof. According to the noise model of yd
i and the Hankel structure of Y , ΣY can be expressed as

(ΣY )i, j =

{
σ2, (vec(Y ))i = (vec(Y )) j

0, otherwise
. (4.46)

Let ζi ∈RL be the i-th column of
(
gT⊗ IL

)
, and S :=

{
(i, j)

∣∣∣(vec(Y ))i = (vec(Y )) j

}
. We have

Σg = σ
2

∑
(i, j)∈S

ζiζ
T
j . (4.47)

Let the i-th and the j-th entries of vec(Y ) correspond to the (q,r)-th and the (s, t)-th entries of Y ,
respectively, i.e., i = (r−1)L+q, j = (t−1)L+ s. From the Hankel structure, the pair (i, j) ∈ S
iff q+ r = s+ t. According to the structure of

(
gT⊗ IL

)
, we have ζi = greq, ζ j = gtes, where

eq ∈ RL is the q-th standard basis vector, and similarly for es. Thus,

Σg = σ
2

∑
q+r=s+t

grgteqeT
s . (4.48)

So the (q,s)-th entry of Σg is given by

(Σg)q,s = σ
2

∑
q+r=s+t

grgt , (4.49)

which directly leads to Lemma 4.1.

Remark 4.4 (Data-Driven Noise Level Estimation). When the noise level σ2 in the output
signal matrix Y is unknown, it can be estimated using the same method (4.36) as discussed in
Section 4.2.2. It is applicable when the median singular value wmed comes purely from noise, i.e.,
nyL > 2nx. The noise level of online data σ2

p can be set to zero when initial conditions are known
exactly or to σ2 when the same sensor is used for offline and online measurements. Otherwise,
online measurements can be taken beforehand, and σ2

p can be estimated similarly to σ2.
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Define

ỹ :=

[
εy

ŷ

]
= Y g−

[
yini

0

]
=
(

gT⊗ IL

)
vec(Y )−

[
yini

0

]
, (4.50)

where εy := Ypg−yini is the residual of the past output relation, representing the total deviation
of the past output trajectory from the noise-free case. Then, we want to construct an estimator
that maximizes the conditional probability of observing the realization ỹ corresponding to the
available data given g. The statistics of ỹ given g are given by

E(ỹ|g) = E(Y )g−

[
E(yini)

0

]
=

[
Y 0

p g−y0
ini

Y 0
f g

]
=

[
0

Y 0
f g

]
, cov(ỹ|g) = Σg +

[
σ2

pI 0
0 0

]
=: Σ̃g.

(4.51)

Thus, due to the linearity of the normal distribution, we have

ỹ|g∼N
([

0
Y 0

f g

]
, Σ̃g

)
, (4.52)

which has the probability density

p(ỹ|g) = (2π)−
L
2 det(Σ̃g)

− 1
2 exp

−1
2

[
Ypg−yini

Yf g−Y 0
f g

]T

Σ̃
−1
g

[
Ypg−yini

Yf g−Y 0
f g

]. (4.53)

Note that here Y 0
f is also unknown and can be estimated with the maximum likelihood approach

as well. In this way, we are ready to derive the signal matrix model (SMM) by solving the
following optimization problem:

min
g∈G,Y 0

f

− log p(ỹ|g,Y 0
f ), (4.54)

where G :=
{

g ∈ RM
∣∣col(Up,U f )g = col(uini,u)

}
is the parameter space defined by the known

noise-free input trajectory.

Substituting (4.53) into (4.54), we have the equivalent optimization problem:

min
g∈G,Y 0

f

logdet(Σ̃g(g))+

[
Ypg−yini

Yf g−Y 0
f g

]T

Σ̃
−1
g (g)

[
Ypg−yini

Yf g−Y 0
f g

]
. (4.55)

It is easy to see that the optimal value of Y 0
f is Yf regardless of the choice of g. So (4.55) is

equivalent to

min
g∈G

logdet(Σ̃g(g))+

[
Ypg−yini

0

]T

Σ̃
−1
g (g)

[
Ypg−yini

0

]
. (4.56)

In this objective function, the first term indicates the uncertainty of the prediction, whereas the
second term penalizes the deviation from the past output measurements.
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4.3.2 Iterative Computation of the Estimator

Unfortunately, (4.56) is a non-convex problem. To find a computationally efficient algorithm to
solve (4.56), we relax the problem and solve it with sequential quadratic programming (SQP)
(Boggs and Tolle, 1995). First, the cross-correlation between elements in Y is neglected and the
covariance matrix Σ̃g is approximated with its diagonal part, denoted by Σ̄g, i.e.,

(
Σ̄g
)

i, j :=

{(
Σ̃g
)

i, j , i = j

0, i ̸= j
. (4.57)

Remark 4.5. When the signal matrix Z is constructed as a Page matrix or from independent
trajectories as discussed in Remark 4.1, it is easy to see that Σg is diagonal with Σg = σ2 ∥g∥2

2 I
and this approximation holds exactly.

Remark 4.6. This approximation gives an upper bound on the log-det terms. According to
Hadamard’s inequality, since Σ̃g ∈ SL

++, we have logdet(Σ̃g(g))≤ logdet(Σ̄g(g)).

In this way, problem (4.56) is approximated as

min
g∈G

L′ log
(
∥g∥2

2

)
+L0 log

(
σ

2 ∥g∥2
2 +σ

2
p

)
+

1

σ2 ∥g∥2
2 +σ2

p

∥Ypg−yini∥2
2 . (4.58)

This problem can be readily solved by SQP. The following QP problem is solved for each
iteration.

g(k+1) = argmin
g

λ (g(k))∥g∥2
2 +∥Ypg−yini∥2

2

s.t.

[
Up

U f

]
g =

[
uini

u

]
,

(4.59)

where λ (g(k)) := L′σ2
p

/∥∥g(k)
∥∥2

2 +Lσ2. The objective function in (4.58) is approximated by a

quadratic function around g(k), making use of the local expansion logx≈ logx0+
1
x0
(x−x0). The

solution to (4.59) is given in (4.16) with S = I and λ = λ (g(k)) and denoted as

g(k+1) = R1(g(k)) ũ+R2(g(k))yini (4.60)

with slight abuse of notation. This algorithm converges to a local minimum of the problem (4.58).

Remark 4.7. The formulation can be straightforwardly extended to other noise models, including
correlated noise, input noise, and alternative noise distributions. For example, when the noise is
Laplacian, it would lead to an l1-norm penalization in the estimator similar to the regularizer
proposed in Coulson et al. (2019); when i.i.d. Gaussian input errors also exist in offline and
online data, an additional input regularization term ∥Ug− ũ∥2

2 would occur in the iterative
algorithm, i.e., g(k+1) = argmin

g
∥g∥2

2 +λ1(g(k))∥Ypg−yini∥2
2 +λ2(g(k))∥Ug− ũ∥2

2.

Based on the derived maximum likelihood estimator of g, the step of solving the linear system
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(4.9) in Algorithm 4.1 can be replaced by solving the SQP problem (4.59). The SQP problem
can be initialized at the pseudoinverse solution gpinv. This leads to Algorithm 4.4 for maximum
likelihood data-driven prediction.

Algorithm 4.4 Maximum likelihood data-driven prediction: the signal matrix model (SMM)

1: Given: signal matrix Z, noise parameters σ ,σp, ε

2: Input: uini,yini,u.
3: k← 0, g(0)← gpinv from (4.8)
4: repeat
5: Calculate g(k+1) with (4.60).
6: k← k+1
7: until

∥∥g(k)−g(k−1)
∥∥< ε

∥∥g(k−1)
∥∥

8: Output: gSMM = g(k), ŷ = Yf gSMM

4.3.3 Preconditioning of the Signal Matrix

In data-driven applications, it is usually assumed that abundant data are available, i.e., N≫ L.
Under this scenario, the dimension of the intermediate parameter vector g ∈ RM, which needs
to be optimized online, would be much larger than the length of the predicted output trajectory.
This leads to high online computational complexity even to estimate a very short trajectory. On
the other hand, at most 2L independent basis vectors are needed to describe all the possible
input-output trajectories of length L. Therefore, it is possible to precondition the signal matrix
such that only 2L basis trajectories are used.

To do this, we propose the following strategy based on SVD to compress the data such that the
dimension of the parameter vector g is 2L regardless of the raw data length. Let Z = ΩSV T ∈
R2L×M be the SVD of the signal matrix. Define the compressed signal matrix

Z̃ := col
(
Ũp,Ũ f ,Ỹp,Ỹf

)
:= ΩS2L ∈ R2L×2L, (4.61)

where Ũp,Ỹp ∈ RL0×2L, Ũ f ,Ỹf ∈ RL′×2L, and S2L is the first 2L columns of S.

It is shown in the following proposition that Algorithm 4.4 with the compressed signal matrix
obtains the same output trajectory ŷ as with the raw signal matrix.

Proposition 4.1. Let the predicted trajectories with signal matrices Z and Z̃ from Algorithm 4.4
be ŷ and ŷ′, respectively. Then we have ŷ′ = ŷ.

Proof. Define the transformed signal matrix Z̄ := col(Ūp,Ū f ,Ȳp,Ȳf ) := ΩS. Then the relations

between the signal matrices are given by Z = Z̃V T
2L, Z = Z̄V T, and Z̄ =

[
Z̃ 0

]
, where V2L denotes

the first 2L columns of V .

Denote the variables with the compressed signal matrix by a tilde and the variables with the

72



4.3 Maximum Likelihood Prediction: the Signal Matrix Model

transformed signal matrix by a bar. Since V T
2LV2L = I, we have gpinv = V2L g̃pinv. This leads to∥∥gpinv

∥∥2
2 =

∥∥g̃pinv
∥∥2

2, and thus λ (g(0)) = λ (g̃(0)).

Suppose at the k-th iteration, λ (g(k)) = λ (g̃(k)). Due to the orthogonality of V and the sparsity
structure of Ū and Ȳp, we have g(k+1) = V ḡ(k+1), and ḡ(k+1) = col

(
g̃(k+1),0

)
. This leads to

g(k+1) =V2L g̃(k+1) and
∥∥g(k+1)

∥∥2
2 =
∥∥g̃(k+1)

∥∥2
2. Thus for all k, we have g(k) =V2L g̃(k) by induction.

Therefore, the predicted trajectory satisfies ŷ = Yf g(k) = Ỹf g̃(k) = ŷ′.

Remark 4.8. It can be seen from the proof that Σ̄g(g) = Σ̄g(g̃). So, with the compressed signal
matrix, the output trajectory estimate has the same covariance as the raw signal matrix when
Page matrices are used and the same diagonal components when Hankel matrices are used.

Proposition 4.1 shows that regardless of the size of the dataset, an SVD operation can be conducted
offline to reduce the size of the signal matrix to a square matrix while obtaining the same results
as with the original signal matrix. In this way, the online computational complexity only depends
on the prediction horizon.

4.3.4 Comparison of Data-Driven Predictors

The performance of Algorithm 4.4 is analyzed numerically by comparing the accuracy of the
predicted output ŷ measured by the fitting metric similar to (1.8):

W := 100 ·

1−

[
∑

L′
i=1(yi− ŷi)

2

∑
L′
i=1(yi− ȳ)2

]1/2
 , (4.62)

where yi are the true outputs, ŷi are the estimated outputs, and ȳ is the mean of the true outputs.
We compare 1) pinv: the least-norm solution (4.8), 2) exact: the SQP solution of the exact MLE
problem (4.56) initialized at gpinv, 3) SMM-1: the solution after one iteration of Algorithm 4.4,
and 4) SMM: Algorithm 4.4.

Consider random SISO systems with state dimensions between 2 and 10 (generated by MATLAB

function drss). The following parameters are used: L0 = nx and L′ = 10. Inputs for the
identification data (ud

i )
N
i=1 and simulation conditions uini, yini, u are all i.i.d. unit Gaussian. For

each analysis, 100 Monte Carlo simulations are conducted.

The prediction accuracy of different MLE algorithms are plotted in Figure 4.3(a) for different data
sizes N. For small data sizes, the exact estimate obtains very similar performance to the SMM
estimates. This indicates that the approximate solution closely matches the original MLE problem.
Due to the increasing dimension of g, the performance of exact, where the data compression
scheme does not apply, becomes worse for larger data sizes. On the other hand, Algorithm 4.4
converges very quickly as the one-iteration solution SMM-1 obtains almost identical performance
to the converged solution SMM at all data sizes.
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Figure 4.3: Comparison of prediction accuracy with different data-driven predictors.

The SMM estimate is compared against pinv in Figure 4.3(b) for different online noise levels σ2
p .

It is showcased that SMM is more accurate than pinv due to the inclusion of the correct noise
model. In particular, this performance improvement is more significant when σ2

p is large. To
assess the general validity of the results shown in Figure 4.3(b), it is demonstrated theoretically in
the following proposition that the SMM obtains a smaller covariance than the least-norm solution
when noise is present only in yini.

Proposition 4.2. Let gpinv and gSMM be the estimates from the least-norm solution (4.8) and
Algorithm 4.4, respectively. When σ2 = 0, we have tr(cov(gSMM))< tr(cov(gpinv)).

Proof. Let Kλ := F−1−F−1UT(UF−1UT)−1UF−1 and gλ := KλY T
p yini +R1ũ. As discussed

in Section 4.1.2, when λ → 0+, gλ converges to gpinv. When λ = L′σ2
p/∥gλ∥2

2, gλ = gSMM

since σ2 = 0. Then we have cov(gλ ) = σ2
p(KλY T

p )(KλY T
p )T. The derivative of tr(cov(gλ )) with

respect to λ is calculated as follows:

∂ tr(cov(gλ ))

∂ (F−1)i, j
= tr

[(
∂ tr(cov(gλ ))

∂Kλ

)T
∂Kλ

∂ (F−1)i, j

]

= 2σ
2
p tr
[(

Y T
p YpKλ

)T
Kλ F∆(i, j)FKλ

]
,

(4.63)

where the (i, j)-th element of ∆(i, j) ∈ RM×M is 1 and the other elements are 0. Then,

∂ tr(cov(gλ ))

∂λ
= tr

[(
∂ tr(cov(gλ ))

∂F−1

)T
∂F−1

∂λ

]

=−2σ
2
p tr

[(
FKλ

(
Y T

p YpKλ

)T
Kλ F

)T
F−2

]
=−2σ

2
p tr
(

KλY T
p YpKλ Kλ

)
.

(4.64)
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According to the Schur complement, since[
F−1 F−1UT

UF−1 UF−1UT

]
=

[
I
U

]
F−1

[
I UT

]
≻ 0, (4.65)

we have Kλ ≻ 0. Together with KλY T
p YpKλ ≻ 0, we have ∂ tr(cov(gλ ))/∂λ < 0 for all λ . This

directly leads to Proposition 4.2.

4.3.5 Impulse Response Estimation as Trajectory Prediction Problem

One direct application of the derived stochastic data-driven trajectory predictor in system iden-
tification is to identify the impulse responses of the system by simulating the SMM with a
pulse input. Numerical tests show that model fitting is improved compared to the conventional
least-squares estimate when the truncation error is significant, or the input history is unknown.

Consider the regression problem (3.2) for estimating the impulse response discussed in Section
3.1. Note that there is an overload of the notation g since both are the conventional notation
used in the literature. There are two main assumptions underlying this formulation and the
associated least-squares estimate (3.3): 1) the truncation error of the finite impulse response is
negligible, i.e., gi ≈ 0 for all i ≥ ng, and 2) data collection starts as rest, i.e., ud

t = 0, ∀ t ≤ 0.
Otherwise additional input measurements (ud

i )
0
i=2−ng

are required or the first ng−1 rows need to
be discarded.

However, these assumptions may not be satisfied in practice. When the state matrix A has a large
condition number, a very long impulse response sequence is needed to remove the truncation
error, even for a low-order system. The least-squares algorithm may become impractical in this
case due to the limited data length. If the truncation error is not negligible, the estimator is not
correct, i.e., in the noise-free case, the estimate does not coincide with the true system. When the
input history is unknown, the first (ng−1) measurements cannot be used, under which case the
data efficiency is substantially affected when a large ng is needed.

Instead, we propose using the SMM to estimate the impulse response by finding the length-ng

response to a pulse input from zero initial conditions, i.e.,

uini = 0, yini = 0, u = col(1,0) , L′ = ng. (4.66)

Since the initial condition is known exactly, we have σp = 0. Then the output trajectory ŷ is
an estimate of the length-ng impulse response of the system (Markovsky et al., 2005b). This
approach requires neither of the assumptions for the least-squares method. Instead of requiring a
length-(ng−1) input history sequence, this approach only uses the first L0 entries of the data to
estimate the initial condition. In fact, the estimator is correct and unbiased for an arbitrary length
ng and unknown input history as shown in Theorem 4.1.3, as long as the persistency of excitation
condition is satisfied.
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Figure 4.4: Comparison of impulse response estimation with truncation errors. Colored area:
estimates within two standard deviations.

The SMM-based algorithm is tested against the least-squares estimate by applying it to numerical
examples. We compare the proposed estimate SMM (Algorithm 4.4 with (4.66)) with the least-
squares estimate LS (3.3). The parameters used in the simulation are N = 50, L0 = 4, ng = L′ =
11, σ2 = 0.01. In SMM, the noise level σ2 is estimated using (4.36). The identification data are
generated with i.i.d. unit Gaussian input signals. For each case, 1000 Monte Carlo simulations
are conducted.

In the first example, we consider the fourth-order LTI system G2(q) defined in (3.26). This system
is relatively slow. The truncation error is significant when ng = 11 is selected. First, the LS and
SMM algorithms are compared in the noise-free case, and the results are shown in Figure 4.4(a).
It can be seen that LS is not correct due to the presence of truncation errors, whereas the SMM
estimator is correct. When the noise is present, the LS and SMM algorithms are compared in
Figure 4.4(b). The SMM estimator has a smaller variance compared to LS.
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Figure 4.5: Comparison of impulse response estimation with unknown input history. Colored
area: estimates within two standard deviations.

In the second example, we focus on the effect of unknown input history by investigating a faster
LTI system used in Pillonetto and De Nicolao (2010):

G5(q) =
0.9183q

q2 +0.24q+0.36
. (4.67)

The system has been normalized to have an H2-norm of 1. In this case, the truncation error is
already negligible at ng = 11, but we assume the input history is unknown. The results of the
estimation are illustrated in Figure 4.5. The results of the SMM algorithm are shown to be more
accurate than the LS algorithm, especially for the first four coefficients.

To quantitatively assess the performance of different algorithms, we quantify the model fitting by
the metric W in (1.8). The boxplots of model fitting for both examples are plotted in Figure 4.6.
For comparison, the case with known input history is also plotted for example 2. The SMM
algorithm performs better than the LS algorithm when the truncation error is significant or the
input history is unknown. In example 1, the LS model fitting is similar for the noisy and noise-free
cases, indicating that the truncation error is the primary source of error here. However, when
both assumptions of the least squares are satisfied, LS performs slightly better than SMM. This is
because part of the data is used to estimate the initial condition in Algorithm 4.4, whereas it is
known for the LS algorithm.

4.4 Confidence Region Analysis of Prediction Errors

In this section, confidence regions are established for indirect data-driven prediction algorithms.
The result first exploits information from the underlying state-space model, after which a data-
driven approximation of the model information is proposed. Then, a minimum MSE predictor
is proposed based on the prediction error quantification. The results are verified by numerical
simulation.
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(a) Example 1 (b) Example 2

Figure 4.6: Boxplots of model fitting for both examples with 1000 simulations. In (a), magenta:
noisy data, blue: noise-free data. In (b), yellow: unknown input history, cyan: known input
history.

4.4.1 Derivation of the Confidence Region

For any stochastic data-driven predictor in the form of (4.13), the output estimate ŷ differs from
the true output y due to the following two sources of error: 1) the output part of the signal matrix
Yf is noisy, 2) the predictor estimates a trajectory whose output initial condition is Y 0

p g, which
differs from the trajectory to be predicted whose output initial condition is y0

ini. Consider Σg

defined in (4.43) and vp ∼N (0,Σyini). By characterizing the distributions of these two sources of
error for a particular estimate of g and δ , we obtain the following confidence region for stochastic
data-driven prediction.

Theorem 4.2. Consider a data-driven predictor ŷ = FZ(u;uini,yini) =Yf g satisfying (4.13). The
true output y is in the following ellipsoidal set with probability (w.p.) p:

Y =
{

y | (ŷ−y−Γδ )T
Σ
−1 (ŷ−y−Γδ )≤ µp

}
, (4.68)

where

Γ := col
(
CAL0 , . . . ,CAL−1) col

(
C, . . . ,CAL0−1)†

, (4.69)

Σ :=
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

]
+ΓΣyiniΓ

T, (4.70)

and µp satisfies Fχ2(nyL′)(µp)≥ p, where Fχ2(d)(·) is the cumulative distribution function of the
χ2-distribution with d degrees of freedom.
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Proof. Let the stochastic noise in Yp, Yf , and yini be Ep, E f , and vp, respectively, i.e.,

Ep := Yp−Y 0
p , E f := Yf −Y 0

f , vp := yini−y0
ini. (4.71)

The estimation error can be decomposed as follows, according to the two aforementioned sources
of error

ŷ−y = E f g+y−, (4.72)

where y− is the error due to the discrepancy
(
Y 0

p g−y0
ini

)
in the output initial condition. The

initial condition error y− can be seen as the autonomous response from initial condition u−ini = 0,
y−ini = Y 0

p g−y0
ini. From (4.13b) and (4.71), we have

Y 0
p g = yini +δ −Epg, y0

ini = yini−vp, (4.73)

y−ini = (yini +δ −Epg)− (yini−vp) = δ +vp−Epg. (4.74)

Let the state of the trajectory at time −L0 be x−. Then we have

y−ini = col
(
C, . . . ,CAL0−1)x−, y− = col

(
CAL0 , . . . ,CAL−1)x−. (4.75)

Since L0 ≥ l, col
(
C, . . . ,CAL0−1

)
has full column rank. Thus, we have

x− = col
(
C, . . . ,CAL0−1)† y−ini. (4.76)

This directly leads to y− = Γy−ini. From (4.72)-(4.74), the estimation error is then

ŷ−y = E f g+Γ(δ +vp−Epg) . (4.77)

Recall that vp ∼ N
(
0,Σyini

)
, col(Ep,E f )g

∣∣g ∼ N (0,Σg), and they are uncorrelated. The
distribution of (ŷ−y) given g and δ is Gaussian with

E(ŷ−y) = Γδ ,

cov(ŷ−y) = E

([
−Γ InyL′

][Ep

E f

]
g+Γvp

)([
−Γ InyL′

][Ep

E f

]
g+Γvp

)T

=
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

]
+ΓΣyiniΓ

T = Σ.

(4.78)

Therefore, (ŷ−y−Γδ )T
Σ−1 (ŷ−y−Γδ ) is subject to the χ2-distribution with L′ degrees of

freedom. This directly leads to (4.68).

Alternatively, the distribution of the true output trajectory can be expressed for a given predictor
from (4.78).

Corollary 4.1. For a given g, the distribution of the output trajectory y is given by y|g∼N (ȳ,Σ),

79



Chapter 4. Nonparametric Trajectory Prediction with Stochastic Data

where
ȳ := Yf g−Γ(Ypg−yini). (4.79)

Remark 4.9. Theorem 4.2 still holds when the system is not observable by replacing A, C, and l
with those of the observable part of the system.

Remark 4.10. The derivation is inspired by the prediction error bound presented in Section IV.C
of Berberich et al. (2021). However, the results in Berberich et al. (2021) consider a bounded
non-stochastic noise model and provide a deterministic but admittedly non-tight bound on
∥ŷ−y∥.

Remark 4.11. When the noise is non-Gaussian, the statistics in Corollary 4.1 still hold, i.e.,
E [y|g] = ȳ and cov(y|g) = Σ.

Remark 4.12. When the diagonal approximation of Σg in Section 4.3.2 (cf. Remark 4.5) is used,
Σ can be simplified as

Σ = ∥g∥2
2 T +ΓΣyiniΓ

T, where T := σ
2
(

ΓΓ
⊤+ I

)
. (4.80)

Remark 4.13. Consider the case when disturbances wt are present in the system (cf. Remark 4.3).
Assume that the offline disturbance sequence wd is noise-free and the online disturbance sequence
is measured and predicted as w = w0+εw, where εw ∼N (0,Σw). Theorem 4.2 and Corollary 4.1
still hold with the augmented input signal matrix and the augmented input sequence by adding
an additional term in Σ due to the online disturbance error:

Σ =
[
−Γ InyL′

]
Σg

[
−ΓT

InyL′

]
+ΓΣyiniΓ

⊤+ΓwΣwΓ
⊤
w , (4.81)

where Γw := (Yf −ΓYp)Rw and Rw is the last nwL columns of R1.

Unfortunately, the confidence region given in Theorem 4.2 is not available in practice since Γ

depends on the unknown model parameters A and C. However, this system parameter matrix can
be formulated alternatively by another data-driven prediction scheme offline. As can be seen
from the proof of Theorem 4.2, the matrix Γ can be considered as the true linear data-driven
predictor y = Γyini with u = 0 and uini = 0. Using the certainty equivalence principle, an estimate
Γ̂Z can be found by replacing y with ȳ. Then we have

ȳ = Yf R2yini− Γ̂Z(YpR2yini−yini) = Γ̂Z yini, (4.82)

which leads to
Γ̂Z = Yf R2 (YpR2)

−1 . (4.83)
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This estimate is correct in the noise-free case and consistent under mild conditions, as shown
in the following propositions. The validity of the estimate will be investigated numerically in
Section 4.4.3.

Proposition 4.3. Consider predictors in the form of (4.14). If σ2 = 0, Theorem 4.2 and Corol-
lary 4.1 are still satisfied by replacing Γ with Γ̂Z .

Proof. When σ2 = 0, all designs of λ and S are equivalent to the subspace predictor, under
which case R2 is the last nyL0 columns of col(U,Yp)

† and thus YpR2 = InyL0 . According to
Theorem 4.1.3, for any output initial condition yini, y = Γ̂Z yini is the unique autonomous response
with uini = 0. So we have y− = Γ̂Z y−ini. The rest of the proof of Theorem 4.2 remains the
same.

Remark 4.14. In general, Γ̂Z ̸= Γ. This is because when nyL0 > nx, the valid Γ in the proof of
Theorem 4.2 is not unique. The pseudoinverse solution (4.69) gives only one possibility.

Proposition 4.4. Consider predictors in the form of (4.14). Let the singular values of col(U,Yp)

be σ1, . . . ,σLσ
in descending order, where Lσ := nuL+nyL0. Then as M→ ∞, Theorem 4.2 and

Corollary 4.1 hold asymptotically by replacing Γ with Γ̂Z , if σLσ
→ ∞.

Proof. Let col(U,Yp) :=ΩSV⊤ be the SVD, where Ω,S∈RLσ×Lσ and V ∈RM×Lσ . Then, gpinv =

V S−1Ω⊤ω , where ω := col(uini,u,yini), and
∥∥gpinv

∥∥2
2 ≤ ∥V∥

2
2

∥∥S−1
∥∥2

2 ∥Ω∥
2
2 ∥ω∥

2
2 = ∥ω∥

2
2

/
σ2

Lσ
.

Note that gpinv is also the least-norm solution to the linear system col(U,Yp)g = ω , so we have
∥g∥2

2 ≤
∥∥gpinv

∥∥2
2. Therefore, if σLσ

→ ∞, ∥g∥2
2 → 0 and Σ→ 0 since Σyini = 0. So we have

y− = Γ̂Z y−ini asymptotically. The rest of the proof of Theorem 4.2 remains the same.

Remark 4.15. The singular value condition σLσ
→ ∞ requires that the columns of col(U,Yp)

activate all directions persistently as M→ ∞. This is satisfied for, for example, independent
random or repeated full-rank inputs.

4.4.2 Minimum Mean-Squared Error Predictor

In this subsection, the distribution of the prediction error (4.78) is used to propose an optimal
predictor in the form of (4.13). This algorithm finds g and δ in the mapping by minimizing the
expected prediction error subject to (4.78), which leads to the following proposition.

Proposition 4.5. The minimum MSE estimate of the mapping in the form of (4.13) is given by

FZ(·) = Yf argmin
g

δ
T

Γ
T

Γδ + tr

([
−Γ InyL′

]
Σg

[
−ΓT

InyL′

])
s.t. (4.13b).

(4.84)
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Proof. The MSE is calculated as

MSE(ŷ−y) = E
[
(ŷ−y)T (ŷ−y)

]
= tr

(
cov(ŷ−y)+E(ŷ−y)E(ŷ−y)T

)
= tr

(
Σ+Γδδ

T
Γ

T
)
= tr(Σ)+δ

T
Γ

T
Γδ ,

(4.85)

where the third equality comes from (4.78). From the definition of Σ in (4.70), it is observed that
since ΓΣyiniΓ

T does not depend on the optimization variables g and δ , minimizing the MSE is
equivalent to the optimization problem (4.84).

Remark 4.16. If the diagonal assumption of Σg is considered, (4.84) takes the unified form (4.14)
with S = ΓTΓ and λ = σ2nyL′+σ2 tr(S).

The implications of Proposition 4.5 are twofold. On the one hand, it provides the optimal
solution to the data-driven prediction problem with output noise in terms of minimizing the MSE.
Although the optimal solution relies on the unknown extended observability matrix to formulate
Γ, it can be used with a preliminary model or a model set via minimax approaches.

On the other hand, similar to establishing the confidence region, the parameter Γ used in the
minimum MSE solution (4.84) can be replaced by the data-driven estimate Γ̂Z (4.83) derived from
the same signal matrix for an approximate solution. This leads to the minimum-MSE data-driven
predictor, described in Algorithm 4.5.

Algorithm 4.5 The minimum-MSE data-driven predictor with stochastic data

1: Given: signal matrix Z, noise model Σg,Σyini, confidence level p
2: Input: uini,yini,u
3: Calculate Γ̂Z by (4.83).
4: Find ŷ = FZ(u;uini,yini) by solving (4.84) with Γ = Γ̂Z .
5: Find p-confidence region Y by (4.68) with Γ = Γ̂Z .
6: Output: ŷ, Y

4.4.3 Numerical Results

Numerical tests are conducted to illustrate the validity of the derived confidence region and the
effectiveness of the proposed minimum-MSE algorithm. In the examples, stochastic data with
i.i.d. noise are collected from one single experiment and used to construct Z with a Page matrix
construction. Unit Gaussian input sequences are used to generate the data.

First, we consider a simple two-dimensional example for illustration purposes. The prediction
problem is to find the first two points (L′ = 2) in the step response of the following fourth-order
system

G6(q) =
0.1059(0.1q4 +q3 +0.5q2)

q4−2.2q3 +2.42q2−1.87q+0.7225
. (4.86)
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Figure 4.7: Comparison of different confidence region formulations (p = 0.90) tested on the
MSE-SMM predictor with 10 different realizations of the stochastic data.

The system has been normalized to have anH2-norm of 1. The prediction conditions are uini = 0,
yini = 0, and u = [1 1]T. The following parameters are used: L = 10, L0 = 8, M = 80, and noise
level σ2 = 0.1. A confidence level of p = 0.90 is used in the following figures.

Figure 4.7 compares the confidence regions obtained using model-based Γ (4.69) (CR-MB)
and data-driven estimates Γ̂Z , derived using the subspace predictor Γ̂Sub (CR-Sub), the SMM
predictor Γ̂SMM (CR-SMM), and the minimum-WD predictor Γ̂WD (CR-WD). The confidence
regions are tested on the minimum-MSE predictor with data-driven Γ̂SMM (MSE-SMM). Ten
different realizations of the stochastic data are plotted. The results show that the data-driven
formulations (CR-Sub, CR-SMM, and CR-WD) obtain similar confidence regions but are different
from the model-based formulation. This is because the data-driven formulations estimate the
noise-free Γ̂Z that differs from the model-based Γ. Nevertheless, all the confidence regions are
valid for this problem since the true trajectory lies in the regions with high probability.

Then, the sizes of the confidence regions are analyzed for different stochastic data-driven pre-
dictors. The following predictors are compared: 1) subspace predictor (4.19) (Sub), 2) signal
matrix model (Algorithm 4.4) (SMM), 3) minimum-WD predictor (4.22) (WD), and 4) minimum-
MSE predictor using model-based Γ (4.69) (MSE-MB), data-driven Γ̂Sub (MSE-Sub), Γ̂SMM

(MSE-SMM), and Γ̂WD (MSE-WD). Figure 4.8 shows the confidence regions of these stochastic
predictors with model-based Γ (CR-MB). As can be seen from the figure, the existing algorithms
(Sub, SMM, and WD) have larger confidence regions compared to the minimum-MSE algorithms
(MSE-MB and MSE-SMM). This illustrates the effectiveness of the proposed algorithm in im-
proving prediction accuracy. In this example, the confidence regions of MSE-Sub and MSE-WD
are very close to that of MSE-SMM, so they are omitted in Figure 4.8.

To quantitatively assess the derived confidence region and the minimum-MSE prediction algo-
rithm, the following campaign of 1000 Monte Carlo simulations is set up. A bank of 1000 SISO
systems is randomly generated by the drss command in MATLAB with random numbers of
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Figure 4.8: Comparison of different stochastic data-driven predictors in terms of the confidence
regions (p = 0.90) with model-based Γ (CR-MB).

Table 4.1: Empirical confidence levels of the confidence regions.

p = 0.95 CR-MB CR-Sub CR-SMM CR-WD
Sub 97.1% 98.7% 98.4% 98.7%

SMM 96.8% 97.4% 97.3% 97.3%
MSE-SMM 95.2% 96.4% 96.2% 96.4%

p = 0.99 CR-MB CR-Sub CR-SMM CR-WD
Sub 99.3% 100% 99.8% 99.9%

SMM 99.2% 99.7% 99.7% 99.7%
MSE-SMM 99.0% 99.3% 99.2% 99.3%

states between 3 and 8. These random systems are normalized to have an H2-gain of 1. The
prediction problem uses the following parameters: L = 20, L0 = 8, L′ = 12, and M = 320. The
input u and the initial condition (uini,yini) are selected randomly with a unit Gaussian distribution.

Table 4.1 compares the percentage of the simulations where the true response is in the confidence
region, i.e., yi ∈ Y i for the i-th simulation, for the model-based and different data-driven formula-
tions. Two confidence levels, p = 0.95 and p = 0.99, are selected. The noise level is selected
as σ2 = 0.1. The rows in Table 4.1 correspond to different predictors, whereas the columns
correspond to different formulations of the confidence region. It can be seen from the table that
the empirical confidence levels match the targeted p-value well with the model-based Γ (CR-MB)
for all three predictors, where Theorem 4.2 is satisfied exactly. With the data-driven estimates Γ̂Z ,
the confidence regions become marginally more conservative as the empirical confidence levels
are slightly larger in Table 4.1. The results of the three data-driven estimates (CR-Sub, CR-SMM,
CR-WD) are similar, which indicates that the confidence region is not very sensitive to the choice
of the Γ̂Z estimation method.

Table 4.2 compares the empirical MSE of the predictors in the Monte Carlo simulations to the
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Table 4.2: Comparison of the estimated and the empirical MSE.

σ2 = 0.1 Empirical CR-Sub CR-SMM CR-WD
Sub 0.115 0.153 0.149 0.152

SMM 0.099 0.142 0.137 0.140
MSE-SMM 0.096 0.136 0.131 0.134

σ2 = 1 Empirical CR-Sub CR-SMM CR-WD
Sub 1.106 1.529 1.485 1.511

SMM 0.915 1.391 1.344 1.372
MSE-SMM 0.897 1.335 1.286 1.317

Table 4.3: Comparison of the empirical MSE for different predictors.

σ2 = 0.1 σ2 = 0.5 σ2 = 1
Sub 0.115 0.558 1.106

SMM 0.099 0.476 0.915
WD 0.113 0.548 1.091

MSE-MB 0.094 0.435 0.833
MSE-Sub 0.097 0.464 0.908

MSE-SMM 0.096 0.460 0.897
MSE-WD 0.097 0.462 0.902

MSE estimated by (4.85) with the approximate data-driven confidence regions. The empirical
MSE is computed as MSEemp (ŷ−y) := 1

Ns
∑

Ns
i=1

∥∥ŷi−yi
∥∥2

2 , where ŷi and yi are the predicted and
the true responses of the i-th simulation, respectively, and Ns = 1000. Two different noise levels
of σ2 = 0.1 and σ2 = 1 are considered. Similar to the observation from Table 4.1, the estimated
MSE is more conservative than the empirical ones for all three predictors. It is also observed that
the region CR-SMM is the less conservative among those tested here. Nevertheless, the estimated
MSE can correctly predict the relative error magnitudes of different predictors. This illustrates
that the estimated MSE can be a good indicator of prediction accuracy. Only three representative
predictors are shown in Table 4.1 and Table 4.2 for clarity. The results of the other algorithms are
similar.

Finally, we compare the prediction accuracy of the predictors by the empirical MSE under three
different noise levels: σ2 = 0.1, σ2 = 0.5, and σ2 = 1. The results are shown in Table 4.3. For
all three noise levels, the minimum-MSE predictor with model-based Γ (MSE-MB) achieves the
minimum empirical MSE. This is expected as MSE-MB exactly optimizes for this objective as
demonstrated in Proposition 4.5. However, the model-based Γ is not available in practice. Among
the other practical algorithms, MSE-SMM has the smallest empirical MSE, with slightly better
performance than the direct SMM approach (SMM). This result shows numerically that, with
approximate data-driven formulations of Γ̂Z , the proposed minimum-MSE predictor still obtains
a more accurate prediction than the existing algorithms.
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4.5 Summary

This chapter investigates the problem of nonparametric data-driven trajectory prediction with
stochastic data. Based on the Willems’ fundamental lemma for deterministic data, the stochastic
problem can be tackled in two directions.

In the first direction, the stochastic data are denoised by solving a low-rank Hankel matrix
denoising problem. Instead of finding a low-rank approximation of the noisy matrix, the proposed
approach applies the singular value shrinkage law that is asymptotically optimal in terms of
estimating the noise-free matrix. Together with an iterative algorithm to enforce the generalized
Hankel structure, this algorithm achieves the best noise reduction performance numerically
compared to other low-rank approximation or denoising algorithms.

In the second direction, a novel statistical framework, dubbed the signal matrix model, is proposed
to obtain a tuning-free stochastic data-driven predictor based on maximum likelihood estimation.
The problem is solved efficiently by approximating it as a sequential quadratic program with data
compression. The proposed predictor performs better than the subspace predictor and can obtain
impulse response estimates with less restrictive assumptions than the least-squares method.

Finally, the prediction error of data-driven predictors with stochastic data is characterized statisti-
cally. The framework provides ellipsoidal confidence regions for various predictors. It also offers
an optimal predictor that minimizes the mean-squared prediction error directly. In practice, both
the confidence region and the minimum mean squared error predictor can be implemented with
data-driven approximations that show good accuracy numerically.
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5 Predictive Control with Data-Driven
Predictors

This chapter focuses on designing predictive controllers with the nonparametric data-driven
predictors studied in Chapter 4. This approach, known as data-driven predictive control (DDPC),
is the data-driven counterpart to model predictive control (MPC), which solves a finite-horizon
optimal control problem in a receding horizon fashion. Compared with model-based predictors,
which typically provide one-step-ahead prediction at one time, data-driven trajectory predictors
are more convenient by providing multi-step-ahead prediction directly.

With deterministic data, trajectory characterization from the Willems’ fundamental lemma (WFL)
can be used as an implicit predictor. This idea has attracted significant attention since its proposal
in Coulson et al. (2019) under the name of data-enabled predictive control (DeePC). As discussed
in Section 4.1.2, this characterization is ill-defined with uncertainties. This issue can be remedied
by adding regularization terms to the control cost to penalize unreliable predictions. This idea,
known as direct DDPC or regularized DeePC, has been extensively studied under the robust
control framework with a bounded uncertainty set, including distributionally robust optimization
(Coulson et al., 2022), performance guarantee (Berberich et al., 2021; Huang et al., 2023), and
constraint tightening (Berberich et al., 2020; Klöppelt et al., 2022). Still, it is unclear how the
regularization parameters should be designed in practice and how the control actions can be
interpreted under ill-defined predictions. On the other hand, research under the stochastic control
framework is limited, where existing works adopt restrictive assumptions, such as noise-free
offline data (Kerz et al., 2023) and exact polynomial chaos expansions of stochastic measurements
(Pan et al., 2023).

Section 5.1 investigates the indirect DDPC algorithm by adopting the well-defined indirect data-
driven predictor discussed in Sections 4.3, namely the signal matrix model (SMM), with certainty
equivalence. This algorithm is named signal matrix model predictive control (SMM-PC). The
control performance of the proposed algorithm is shown to be better than the pseudoinverse
subspace predictor and the direct DDPC algorithm with optimal regularization parameters by
oracle, especially under low SNRs. Online data can also be incorporated into the signal matrix to
make the algorithm adaptive, improving system knowledge online and extending the algorithm to
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slowly time-varying systems.

However, the certainty-equivalent implementation suffers from the following problems: 1) the
control cost does not account for the prediction error, 2) the initial condition measurements suffer
from noise, which cannot be improved by collecting more data, and 3) the constraint satisfaction
is not guaranteed. Section 5.2 addresses these problems under general unbounded stochastic
uncertainties, utilizing the prediction error quantification provided in Section 4.4. In particular,
three modifications are made to the certainty-equivalent DDPC algorithm. 1) The nominal control
cost is replaced by the expected control cost. This introduces an additional uncertainty term
resembling the regularizer used in regularized DeePC, but the weight is statistically specified
without tuning. 2) The output initial condition is estimated by Kalman-filtering the output
measurements with one-step-ahead predictions from the previous time instant. This significantly
reduces the prediction error. 3) Output constraints are formulated as chance constraints and
guaranteed by second-order cone (SOC) constraints. The effectiveness of these modifications
is tested in a numerical example, where satisfactory control performance in terms of both
control cost and constraint satisfaction is observed with significantly improved initial condition
estimation.

This chapter concludes by applying the proposed algorithm to a space heating control case study in
high-fidelity simulation. The control performance is extensively analyzed by comparing it against
predictive control algorithms using subspace identification and direct & indirect DDPC. Results
demonstrate that the proposed stochastic SMM-PC algorithm satisfies operating constraints more
reliably than competing methods and reduces energy consumption simultaneously.

5.1 Data-Driven Predictive Control with Signal Matrix Model

We are interested in designing a receding horizon control algorithm with data-driven predictors
derived from the signal matrix Z instead of the state-space model (1.2). These algorithms are
known as data-driven predictive control (DDPC). In particular, consider the stochastic optimal
tracking problem within a horizon of L′ that minimizes the following expected control cost

min
(ut

k)
L′−1
k=0

Jctr :=
L′−1

∑
k=0

∥∥ut
k

∥∥2
R +E

[
L′−1

∑
k=0

∥∥yt
k− rt+k

∥∥2
Q

]
(5.1)

at time t (Kouvaritakis and Cannon, 2016), where ut
k is the designed input at time (t + k), yt

k is a
random variable that predicts the noise-free future output yt+k,0, rt denotes the reference trajectory,
and R,Q are the input and the output cost matrices, respectively. The superscript t is used to
denote variables at time t. It is also desired to constrain the outputs within a polytopic set Yt :=
{yt |Htyt ≤ qt } at time t, where Ht :=

[
ht

1 . . . ht
nc

]⊤ ∈ Rnc×ny and qt := col
(
qt

1, . . . ,q
t
nc

)
∈ Rnc .

Similarly, the inputs are constrained to be in the set U t at time t. These lead to the constraints
ut

k ∈Ut+k, yt
k ∈ Yt+k, ∀k = 0, . . . ,L′−1.
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The optimization problem is solved under the constraint that ut := (ut
k)

L′−1
k=0 and yt := (yt

k)
L′−1
k=0

are a possible trajectory of the system (1.2) under the initial condition at time t. In conventional
MPC algorithms, this constraint is enforced by iteratively propagating the state-space model
(1.2) subject to the initial state xt , assuming the knowledge of the model parameters is available.
In DDPC, according to Theorem 4.1.3, this constraint can be characterized by (4.4) subject to
the input and output initial condition of length L0, i.e., ut

ini := (uk)
t−1
k=t−L0

and yt
ini := (yk)

t−1
k=t−L0

,
assuming deterministic data without noise is available.

At each time instant, the first entry in the newly optimized input trajectory is applied to the system
in a receding horizon fashion, i.e., ut := ut

0, and the noisy output yt = yt,0 + vt is measured.

In this section, we take the certainty equivalence approach and assume that the estimated output
trajectory ŷ is the same as the true trajectory y. Modifications taking the stochasticity of the
prediction into account are discussed in Section 5.2.

5.1.1 Data-Enabled Predictive Control

When the system is deterministic without uncertainties and the rank condition (4.3) on data
informativity is satisfied, the following DDPC or unregularized DeePC algorithm based on the
output predictions via (4.4) is equivalent to MPC with exact model knowledge:

min
ut ,yt ,gt

Jctr(ut ,yt)

s.t. col
(
ut

ini,u
t ,yt

ini,y
t)= Zgt ,

ut
k ∈Ut+k, yt

k ∈ Yt+k, ∀k = 0, . . . ,L′−1.

(5.2a)

(5.2b)

(5.2c)

However, when uncertainties are present, the condition (5.2b) no longer serves as a well-defined
predictor to predict yt (cf. Section 4.1.2). If we still want to use this implicit characterization in
DDPC, additional regularization is required in the control cost to penalize unreliable predictions
(Coulson et al., 2019; Dörfler et al., 2023). This becomes the direct regularized DeePC algorithm
in the form of

min
ut ,yt ,gt

Jctr(ut ,yt)+λg
∥∥Πgt

∥∥p
p +λy

∥∥Ypgt −yt
ini

∥∥2
2 (5.3a)

s.t. col
(
ut

ini,u
t)=Ugt , yt = Yf gt , (5.2c), (5.3b)

where λg, λy are design parameters, Π can be selected as I or I− col(U,Yp)
† col(U,Yp), and p is

either 1 or 2. The two regularization terms resemble the cost function in the indirect data-driven
predictor (4.14). So, the regularized control cost can be seen as a trade-off between the control
performance objective Jctr and the trajectory prediction objective. Unlike conventional predictive
control, the estimated trajectory in this algorithm is not associated with a fixed input-output
mapping but is biased towards those that predict better control performance. In addition, no
systematic approaches have been proposed to tune λg and λy, but the control performance is
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known to be very sensitive to the regularization parameters (Huang et al., 2019). Exhaustive
parameter tuning can be extremely time-intensive for systems with large time constants.

5.1.2 Indirect Bi-Level Data-Driven Predictive Control

To avoid the interpretability and the parameter tuning issues discussed above, the rest of this
chapter focuses on another popular method to apply DDPC with uncertainties by replacing
the ill-defined implicit trajectory characterization (5.2b) with the explicit optimization-based
predictor (4.14). This is known as indirect DDPC. By introducing another optimization problem
as a constraint, the optimal control problem then becomes a bi-level problem:

min
ut ,yt ,gt

Jctr(ut ,yt) (5.4a)

s.t. yt = Yf gt , ut
k ∈Ut+k, yt

k ∈ Yt+k, ∀k = 0, . . . ,L′−1, (5.4b)

gt = argmin
g

∥∥Ypg−yt
ini

∥∥2
S +λ ∥g∥2

2

s.t. col
(
ut

ini,u
t)=Ug.

(5.4c)

Although it is generally difficult to solve bi-level optimization problems, as discussed in Sec-
tion 4.1.2, the inner problem (5.4c) admits a linear closed-form solution:

gt = R1 col
(
ut

ini,u
t)+R2 yt

ini. (5.5)

So (5.4c) can be implemented as linear equality constraints, and thus (5.4) becomes tractable.

Remark 5.1. The data compression scheme discussed in Section 4.3.3 applies to both the
regularized DeePC and the indirect bi-level DDPC algorithms.

One notable special case of the indirect DDPC algorithm (5.4) is the subspace predictive control
(SPC) approach (Favoreel et al., 1999; Sedghizadeh and Beheshti, 2018) by adopting the subspace
predictor with S = I and λ → 0+, i.e., gt = gt

pinv := col(Up,U f ,Yp)
† col(ut

ini,u
t ,yt

ini).

As Section 4.3 illustrates, the signal matrix model (SMM) provides more accurate predictions
than the subspace predictor. Therefore, it is desired to use SMM (Algorithm 4.4) as the inner
predictor. However, unlike the QP (5.4c) with a linear closed-form solution, the SQP iterative
algorithm (4.60) does not have a closed-form solution. This makes the optimization problem
computationally challenging, especially in an online scheme.

To address this problem, we notice numerically that the l2-norm of gt does not change much
throughout the receding horizon control, and the algorithm is only iterative with respect to ∥g∥2

2.
So, it makes sense to warm-start the optimization problem from gt−1 at the previous time instant.
Then, the SMM predictor can be approximated by the solution of (4.60) after the first iteration,
i.e.,

gt = R1(gt−1)col
(
ut

ini,u
t)+R2(gt−1)yt

ini. (5.6)
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Table 5.1: Summary of indirect DDPC designs.

SPC Min-WD SMM-PC Min-MSE

S I I I Γ̂T
Z Γ̂Z

λ 0+ nyL0σ2 L′σ2
p

/∥∥gt−1
∥∥2

2 +Lσ2 σ2nyL′+σ2 tr(S)

This corresponds to selecting S = I and λ = L′σ2
p

/∥∥gt−1
∥∥2

2 +Lσ2 in (5.4c) and is referred to
as the linearized SMM predictor in what follows. This approach is named signal matrix model
predictive control (SMM-PC).

Remark 5.2. An alternative approach is to initialize the problem from the pseudoinverse solution
corresponding to the ideal trajectory ut

ideal = 0, yt
ideal = (rk)

t+L′−1
k=t , i.e., λ = L′σ2

p

/∥∥gt
ini

∥∥2
2+Lσ2,

where gt
ini := Z†col

(
ut

ini,u
t
ideal,y

t
ini,y

t
ideal

)
.

Similarly, the minimum-WD and the minimum-MSE predictors can also be used in implementing
indirect DDPC (5.4). Different designs of S and λ in (5.4c) are summarized in Table 5.1.

Compared with the regularized DeePC algorithm (5.3), the indirect DDPC algorithm (5.4) adopts
an explicit input-output mapping, and the design parameters are specified from the data-driven
predictor design without additional tuning.

5.1.3 Performance of Signal Matrix Model Predictive Control

This subsection analyzes the performance of SMM-PC by numerical examples tested on the
fourth-order LTI system (3.26). The following parameters are used in the simulation: L0 = nx = 4,
L′ = 11, and Q = R = 1. Assuming the same sensor for offline and online measurements, we
select σ2 = σ2

p . No input and output constraints are enforced, i.e., U = Y = RL′ . The noise
level σ2 = σ2

p is estimated as described in Remark 4.4 for implementing SMM-PC. The offline
input-output trajectory data are collected with unit i.i.d. Gaussian input signals. The control
performance is assessed by the true total control cost Jtot (1.10) over all time instants.

First, to assess the validity of the linearized SMM predictor, we investigate the discrepancy
between the linearized and the iterative nonlinear SMM in the following example.

Example 5.1. Consider input-output trajectory data of length N = 50 with noise level σ2 =

σ2
p = 0.1. The control objective is to track a sinusoidal reference trajectory rt = 0.5sin

(
π

10 t
)

of
length Nc = 120. After implementing SMM-PC with the linearized SMM predictor, the linearized
SMM predictions, denoted by ŷLSMM, are compared to Algorithm 4.4 with the newly optimized
input sequence, denoted by ŷSMM, at each time instant. Their discrepancies are quantified by

E :=
∥ŷLSMM− ŷSMM∥2
∥ŷSMM∥2

. (5.7)
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Figure 5.1: Normalized discrepancy between the linearized SMM and the iterative SMM.

The histogram of E is plotted in Figure 5.1.

It can be seen from Figure 5.1 that the error resulting from the linearization of SMM is less than
5% for most time instants, which shows that the linearized SMM can still obtain an accurate
input-output mapping.

Then, the control performances of three DDPC algorithms are compared: 1) Sub-PC: subspace
predictive control, 2) DeePC: regularized data-enabled predictive control (5.3), and 3) SMM-
PC: signal matrix model predictive control. In DeePC, the algorithm is tested on a nine-point
logarithmic grid of λg between 10 and 1000. In this example, the control performance is found
to be insensitive to the value of λy, so a fixed value of λy = 1000 is used. To benchmark the
performance, the ideal MPC algorithm (denoted by MPC) is also considered, where both the
true state-space model and the noise-free state measurements are available. The result of this
benchmark algorithm is thus deterministic and gives the best possible control performance with
receding horizon predictive control.

Example 5.2. Consider input-output trajectory data of length N = 200 with noise level σ2 =

σ2
p = 1. A square-wave reference trajectory of length Nc = 60, labeled Ref in Figure 5.2(a), is to

be tracked. For each case, 100 Monte Carlo simulations are conducted. The closed-loop input-
output trajectories of different control algorithms are plotted in Figure 5.2. These trajectories are
characterized by the range within one standard deviation of the Monte-Carlo simulation. The
boxplot of the control performance measure Jtot is shown in Figure 5.3.

The SMM-PC algorithm obtains the closest match to the benchmark trajectory MPC. Sub-PC
applies more aggressive control inputs with much higher input costs, whereas the control strategy
of DeePC is more conservative with more significant tracking errors. SMM-PC also has the
smallest variance of input trajectories against different noise realizations. Figure 5.3 confirms
that SMM-PC performs better than Sub-PC and DeePC in this control task.

When comparing the control performance, the best choices of λg in DeePC are selected with
an oracle for each run as plotted in Figure 5.4 (green) for different noise levels. It can be seen
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Figure 5.2: Comparison of closed-loop input-output trajectories with different control algorithms
(σ2 = σ2

p = 1,N = 200). Colored area: trajectories within one standard deviation.
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Figure 5.3: Boxplot of the control performance in terms of the true total control cost Jtot with
different control algorithms (σ2 = σ2

p = 1,N = 200).

that, even for the same control task, the optimal value of this parameter is not only sensitive to
the noise level but also to the specific realization of the noise. This makes the tuning process
difficult in practice. Nevertheless, the optimal value of λg is used in all simulations despite being
unrealistic in practice. On the other hand, the noise level estimator (4.36) used in SMM-PC is
very effective in estimating σ2 as demonstrated in Figure 5.4 (yellow).

The optimization problems are formulated as QP and solved by MOSEK. The computation
time for the three DDPC algorithms is similar. The effect of the proposed data compression
scheme in Section 4.3.3 is illustrated in Figure 5.5 with the example of SMM-PC. By applying
the preconditioning, the online computational complexity no longer depends on the data size N.

Finally, the sensitivity to different offline data sizes N and noise levels σ2 is investigated in
Figure 5.6. As shown in Figure 5.6(a), the control performance of SMM-PC is not very sensitive
to the number of data points and performs uniformly better among the three algorithms. Good
performance has already been obtained with only N = 75 points. DeePC does not perform very
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area: values within one standard deviation. The dashed line shows the true noise level.
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Figure 5.5: Average computation time of SMM-PC with and without data compression.

well with small data sizes but obtains a similar performance to SMM-PC for large N. Sub-PC
cannot achieve a satisfying result even with a large data size because, as discussed in Section 4.3.4,
the subspace predictor is problematic to deal with online measurement noise σ2

p , which cannot be
averaged out by a large N. Figure 5.6(b) shows that all three algorithms perform similarly at low
noise levels as they are all stochastic variants of the noise-free algorithm (5.2). SMM-PC obtains
slightly worse results under low noise levels (σ2 = σ2

p < 0.05) compared to the optimally tuned
DeePC with an oracle, but the performance advantage of SMM-PC is significant for higher noise
levels.

5.1.4 Incorporation of Online Data

In addition to the offline data (ud ,yd), online measurements can also be used to construct the
signal matrix. This improves the knowledge of the unknown system as the predictive controller is
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Figure 5.6: The effect of different offline data sizes and noise levels on the control performance.

deployed. This is particularly useful when the offline data quality is poor or the model parameters
vary online. This strategy can be interpreted as an equivalent of adaptive MPC (Fukushima et al.,
2007) for the SMM.

At each time instant t ≥ L, a new column can be added to the signal matrix with[
Ut+1

Yt+1

]
:=

[
γUt (uk)

t
k=t−L+1

γYt (yk)
t
k=t−L+1

]
, (5.8)

where Zt := col(Ut ,Yt) is the adaptive signal matrix applied to the SMM-PC algorithm at time
t, and γ is the forgetting factor of previous trajectories. The factor γ can be chosen as 1 for LTI
systems and γ ∈ (0,1) when model variations are expected. Like the offline signal matrix, the
adaptive signal matrix can also be compressed online to maintain 2L columns. The incremental
SVD algorithm in Brand (2002) can be applied to reduce the computational complexity of
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Figure 5.7: Effects of online data adaptation in SMM-PC for datasets with high noise levels. Left:
deviation from ideal MPC, right: boxplot of true total control cost Jtot.

updating the compressed signal matrix, which makes use of the fact that the SVD of col(Ut ,Yt)

in (5.8) is already known from the previous time instant.

The following two examples investigate the effects of incorporating online data under high noise
levels and with slowly time-varying parameters, respectively.

Example 5.3. Consider input-output trajectory data of length N = 100 with a high noise level of
σ2 = σ2

p = 1. The same control objective as Example 5.1 is used. The SMM-PC algorithms are
compared with the fixed signal matrix col(U,Y ) and the adaptive signal matrix col(Ut ,Yt) with
γ = 1. The deviations of the closed-loop trajectories from the ideal MPC trajectory are plotted on
the left of Figure 5.7. In addition, 200 Monte Carlo simulations are conducted, and the boxplot
of the true total control cost Jtot is shown on the right of Figure 5.7.

Example 5.4. Consider the case where one of the model parameters drifts slowly online with

G(q; t) =
0.1159(q3 +0.5q)

q4−2.2q3 +2.42q2−θ(t)q+0.7225
, where θ(t) =

1.87
1+ t/1500

. (5.9)

The offline data length and the noise levels are N = 50 and σ2 = σ2
p = 0.01, respectively. The

SMM-PC algorithms are compared with the fixed signal matrix col(U,Y ) and the adaptive signal
matrix col(Ut ,Yt) with γ = 1,0.9,0.7,0.5. The stage costs Jt are plotted on the left of Figure 5.8,
and the boxplot of the true total control cost Jtot is shown on the right of Figure 5.8 with 50 Monte
Carlo simulations.

As can be seen from Examples 5.3, the control performance improves by using adaptive sig-
nal matrices as more online data accumulate. However, it cannot converge to the ideal MPC
performance since the noise in yini still exists. For Example 5.4, the controller further benefits
from a forgetting factor γ < 1 to reduce the weight of previous trajectories with less accurate
model parameters. The best performance is achieved with γ = 0.9. These results demonstrate that
incorporating online data effectively achieves better control performance for high noise levels
and slowly time-varying systems.
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5.2 Stochastic Indirect Data-Driven Predictive Control

This section extends the certainty equivalence algorithm in the previous section by considering the
predicted trajectory as a random vector whose statistics are specified in Section 4.4. In this section,
we consider the state-space model (4.23) with disturbances, as discussed in Remarks 4.3 and
4.13. The following assumptions are adopted: 1) the noise in each column of Y is independent (cf.
Remark 4.12), 2) the uncertainties can be non-Gaussian (cf. Remark 4.11), and 3) the data-driven
estimate of Γ is correct, i.e., Γ = Γ̂Z . For completeness, results in Chapter 4 are restated under
these conditions as follows, with slight abuse of notation.

Define Ψ := col(U,W ) and wt := (wk)
t+L′−1
k=t−L0

. The distribution of the stochastic output prediction
is given by

E
[
yt |gt]= ȳt , cov

(
yt |gt)= Σ

t , (5.10)

where

gt := Ru col
(
ut

ini,u
t)+Rw wt +R2 yt

ini, (5.11)

[Ru Rw] := F−1
Ψ
⊤(ΨF−1

Ψ
⊤)−1, (5.12)

R2 :=
(

F−1−F−1
Ψ
⊤(ΨF−1

Ψ
⊤)−1

ΨF−1
)

Y⊤p S, (5.13)

ȳt := Yf gt −Γ(Ypgt −yt
ini), (5.14)

Σ
t :=

∥∥gt
∥∥2

2 T +ΓΣ
t
yiniΓ

⊤+ΓwΣwΓ
⊤
w , (5.15)

T := σ
2
(

ΓΓ
⊤+ I

)
, Γw := (Yf −ΓYp)Rw, Γ := Yf R2 (YpR2)

−1 . (5.16)

Based on the stochastic predictor (5.10), the stochastic indirect DDPC algorithm can be proposed.
In the following subsections, the stochastic control cost Jctr is first formulated as a quadratic
objective. Then, the prediction accuracy is improved by filtering the output initial condition
measurements with a Kalman filter. Finally, the output constraints are guaranteed to be satisfied
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with high probability by formulating tightened SOC constraints.

5.2.1 Stochastic Control Cost

The stochastic control cost Jctr is formulated as a quadratic function in the following lemma.

Lemma 5.1. The expected control cost is given by

Jctr =
∥∥ut
∥∥2

R̄ +
∥∥ȳt − rt

∥∥2
Q̄ + tr

(
Q̄T
)∥∥gt

∥∥2
2 + const., (5.17)

where R̄ := IL′ ⊗ R, Q̄ := IL′ ⊗Q, rt := (rt+k)
L′−1
k=0 , and T := σ2

(
ΓΓ⊤+ InyL′

)
. The cost is

quadratic with respect to the optimization variable ut .

Proof. The expected output cost is calculated as:

E
[∥∥yt − rt

∥∥2
Q̄

]
= E

[(
ȳt + et − rt)⊤ Q̄

(
ȳt + et − rt)]

=
∥∥ȳt − rt

∥∥2
Q̄ +E

[(
et)⊤ Q̄et

]
=
∥∥ȳt − rt

∥∥2
Q̄ + tr

(
Q̄Σ

t)
=
∥∥ȳt − rt

∥∥2
Q̄ + tr

(
Q̄T
)∥∥gt

∥∥2
2 + const.,

where et : E [et ] = 0, cov(et) = Σt is the prediction error. The second to last equality is due to the
cyclic property of the trace function. This cost is quadratic with respect to ut since both gt and ȳt

are linear with respect to ut .

The stochastic control cost adds a ∥gt∥2
2-regularization term to the nominal cost. Such regulariza-

tion is required in regularized DeePC (5.3) for well-definedness. However, in regularized DeePC,
it is unclear how to tune the regularization parameter other than trial and error. By considering
the regularizer as the uncertainty term in the expected output cost, the weighting factor can be
reliably selected as tr

(
Q̄T
)
, which depends on the output cost matrix and the noise level.

5.2.2 Initial Condition Estimation

In model-based output-feedback MPC, an estimator has to be designed to estimate the initial state
of the predictor, which is not measurable. This is not required in DDPC since the output initial
condition yt

ini can be directly measured. In fact, in most existing DDPC implementations with
stochastic data, the output initial condition yt

ini comes from measurements as in the deterministic
case, i.e., yt

ini := (yk)
t−1
k=t−L0

. Thus, the associated covariance Σt
yini = σ2

pI is constant in (5.15).
This source of uncertainty can be alleviated by choosing a larger L0, as illustrated in the following
example.

Example 5.5. Consider the same trajectory data and online measurement noise as in Exam-
ple 5.3. The controller performance of SMM-PC is compared with L0 = nx = 4 and L0 = 10. As
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Figure 5.9: Stage costs with different L0. Left: L0 = 4, right: L0 = 10.

another comparison, an additional MPC algorithm is introduced with an FIR model obtained by
simulating the SMM with a pulse, as discussed in Section 4.3.5. This impulse MPC algorithm
does not require noisy past output measurements, so it circumvents the initial condition estimation
problem. The stage costs Jt are plotted in Figure 5.9.

Results from Figure 5.9 demonstrate that when L0 = 4, SMM-PC performs worse than impulse
MPC without online data, and similarly when online data are incorporated, due to inaccurate
initial condition measurements. When a larger value of L0 = 10 is selected, SMM-PC performs
significantly better than impulse MPC and is close to the ideal MPC algorithm.

On the other hand, in the presence of stochastic uncertainties, an adequately designed estimator
in MPC can estimate the initial state with a diminishing covariance much smaller than the noise
level in the measurements. Therefore, although not required, it can be beneficial to improve
the output initial condition measurements by using output predictions at previous time steps to
design an estimator, especially in cases where the online measurement error is significant. In
this subsection, a Kalman filter is designed as the estimator. In particular, we replace yk with its
Kalman-filtered counterpart as the output initial condition. This reduces the prediction errors by
shrinking Σt

yini as time progresses.

In detail, the same predictor (5.10) for predictive control design at time (t−1) is used to filter the
output at time t and update yt

ini. The predictor can be considered as a non-minimal state-space
“model” with “state”

x̄t := col(ut−L0 , . . . ,ut−1,yt−L0,0, . . . ,yt−1,0) . (5.18)

Let ȳt
k and et

k denote the (k + 1)-th block element of ȳt and et , respectively, and Σt
k be the

covariance of et
k, i.e., the (k+1)-th ny×ny block on the diagonal of Σt . The data-driven “model”
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is then given by 
x̄t+1 =

[
Λnu 0

0 Λny

]
︸ ︷︷ ︸

Λ̄

x̄t +


0

ut
0

0

ȳt
0 + et

0

 ,
ζt+1 =

[
0 Iny

]
x̄t+1 + vt = yt,0 + vt = yt ,

(5.19)

where Λk denotes the k-step upper shift matrix with ones on the k-th superdiagonal. The
covariances of the “process noise” et

0 and the measurement noise vt are Σt
0 and σ2

pIny , respectively.
Then, a Kalman filter for (5.19) can be designed to estimate the initial condition x̄t . Let the state
estimate and the output part of the state error covariance be x̄t,t and Pt,t , respectively. Then, the
initial conditions for the DDPC problem can be set as col(ut

ini,y
t
ini) := x̄t,t and Σt

yini := Pt,t . The
Kalman filtering algorithm is summarized in Algorithm 5.1.

Algorithm 5.1 Kalman filter in stochastic indirect DDPC
1: Initialization:

x̄0,0 := col(u−L0 , . . . ,u−1,y−L0 , . . . ,y−1) , (5.20)

P0,0 := InyL0 . (5.21)

2: Prediction:

x̄t,t+1 := Λ̄x̄t,t + col
(
0,ut

0,0, ȳ
t
0
)
, (5.22)

Pt,t+1 := Λ
nyPt,t (Λ

ny)⊤+Σ
t
0. (5.23)

3: Update:

Kt+1 := Σ
t
0
(
Σ

t
0 +σ

2
pIny

)−1
, (5.24)

x̄t+1,t+1 := x̄t,t+1 + col
(
0,Kt+1

(
yt − ȳt

0
))

, (5.25)

Pt+1,t+1 :=
(
Iny−Kt+1

)
Pt,t+1. (5.26)

Remark 5.3. Only one-step-ahead prediction is required to run the Kalman filter. Here, it is
obtained by truncating the same L′-step-ahead predictor used in predictive control for simplicity.
One can also similarly construct a one-step-ahead data-driven predictor with L′ = 1, specifically
for Kalman filtering.

Remark 5.4. A similar idea was proposed in Alpago et al. (2020) for a direct DDPC algorithm.
However, no approach is provided to quantify the covariance of the prediction error required in
the Kalman filter as there is no well-defined predictor in direct DDPC.
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5.2.3 Chance Constraint Satisfaction

Due to the existence of unbounded noise, the output constraints yt,0 ∈ Yt cannot be guaranteed
robustly under unbounded noise. Instead, high-probability chance constraints are considered,
either element-wise as

Pr
(

ht+k
i
⊤

yt
k ≤ qt+k

i

)
≥ p, ∀ i = 1, . . . ,nc, k = 0, . . . ,L′−1, (5.27)

or set-wise as
Pr
(
yt

k ∈ Yt+k
)
≥ p, ∀k = 0, . . . ,L′−1, (5.28)

where p is the targeted probability. These chance constraints are typically guaranteed by tight-
ening the nominal constraints to account for prediction uncertainties. However, unlike standard
model-based predictors with additive uncertainties, the prediction error covariance of the data-
driven predictor (5.10) depends on the particular inputs and initial conditions via gt . So, the
amount of constraint tightening cannot be calculated offline. Define the augmented linear con-
straints by Ȳt := {y | H̄ty≤ q̄t }, where

H̄t :=
[
h̄t

1 . . . h̄t
L′nc

]⊤ := blkdiag
(

Ht , . . . ,Ht+L′−1
)
,

q̄t := col
(
q̄t

1, . . . , q̄
t
L′nc

)
:= col

(
qt , . . . ,qt+L′−1

)
.

The following lemma guarantees chance constraint satisfaction by constraint tightening.

Lemma 5.2. The constraint

q̄t − H̄t ȳt ≥ µ

√
diag

(
H̄tΣtH̄t⊤

)
(5.29)

guarantees the satisfaction of the chance constraints (5.27) if µ ≥
√

1
1−p −1 and (5.28) if

µ ≥
√

ny
1−p .

Proof. Applying the one-sided Chebyshev’s inequality, we have

Pr
(

h̄t
iy

t − h̄t
i ȳ

t ≤
√

1
1−p −1 · std

(
h̄t

iy
t))≥ p, ∀ i, (5.30)

where std
(
h̄t

iyt
)
=

√
h̄t

iΣ
t h̄t

i
⊤. This leads to (5.27) for µ ≥

√
1

1−p −1 since q̄t
i− h̄t

i ȳt ≥ µ

√
h̄t

iΣ
t h̄t

i
⊤

from (5.29).

From the multi-dimensional Chebyshev’s inequality, the ellipsoidal set

E t
k :=

{
et

k

∣∣∣∣et
k
⊤ (

Σ
t
k
)−1 et

k ≤
ny

1− p

}
(5.31)

is a confidence region of the prediction error et
k with at least probability p. Then, the chance
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constraint is satisfied if

ȳt
k ∈ Yt+k⊖E t

k :=
{

y
∣∣y+ e ∈ Yt+k,∀e ∈ E t

k
}
, (5.32)

where ⊖ denotes the Pontryagin difference. For polytope Yt+k and ellipsoid E t
k , we have

Yt+k⊖E t
k =

{
y
∣∣∣ht+k

i
⊤

y≤ qt+k
i −ηE t

k

(
ht+k

i

)
, i = 1, . . . ,nc

}
, (5.33)

where ηE t
k
(h) :=

√
ny

1−p h⊤Σth is the support function of E t
k . Aggregating the constraints for all i

leads to (5.28) for µ ≥
√

ny
1−p .

Remark 5.5. Let Fχ2(d)(·) and FN (·) be the cumulative distribution function of the χ2-distribution
with d degrees of freedom and the unit Gaussian distribution, respectively. The lemma can be
tightened if Gaussian uncertainties are considered, i.e., both vt and wt are Gaussian, by choosing
FN (µ)≥ p for (5.27) and Fχ2(ny)(µ

2)≥ p for (5.28). The proof is very similar to that of Lemma
5.2.

Unfortunately, the tightened constraint (5.29) is not convex. The following corollary provides a
convex surrogate for (5.29).

Corollary 5.1. The second-order cone (SOC) constraint

q̄t − H̄t ȳt ≥ µ
(
c1 + c2

∥∥gt
∥∥

2

)
, (5.34)

where

c1 :=
√

diag
(

H̄t
(

ΓΣt
yiniΓ

⊤+ΓwΣwΓ⊤w

)
H̄t⊤

)
, (5.35)

c2 :=
√

diag
(

H̄tT H̄t⊤
)
, (5.36)

guarantees the satisfaction of (5.29).

Proof. Since
√

∑i ai ≤ ∑i
√

ai, we have c1 + c2 ∥gt∥2 ≥
√

c2
1 + c2

2 ∥gt∥2
2 =

√
diag

(
H̄tΣtH̄t⊤

)
.

The proposed stochastic indirect DDPC algorithm is summarized in Algorithm 5.2.

Remark 5.6. Algorithm 5.2 is only rigorously applicable to linear systems. However, it has
been demonstrated numerically (Dörfler et al., 2023) and experimentally (Elokda et al., 2021)
that such DDPC algorithms can be applied to nonlinear systems as well. Nonlinearities can be
considered as additional output errors in the signal matrix Z. To estimate the magnitude of the
combined output error of both the output noise and the nonlinearities, linear system identification
can be conducted to set the noise level σ2 to the MSE of the prediction with the linear model.
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Algorithm 5.2 Stochastic indirect DDPC
1: Select a data-driven predictor and calculate predictor parameters from (5.12), (5.13), and

(5.16).
2: Initialize the Kalman filter from Algorithm 5.1.
3: for t = 0 to Nc−1 do
4: begin
5: col(ut

ini,y
t
ini)← x̄t,t , Σt

yini← Pt,t , update wt .
6: ut ← argmin

ut
(5.17) s.t. (5.11), (5.14), (5.34), ut

k ∈Ut+k, ∀k = 0, . . . ,L′−1.

7: Apply the first entry in the optimized input trajectory ut = ut
0 to the system and measure

yt .
8: Run the Kalman filter from Algorithm 5.1.
9: end

5.2.4 Numerical Results

This subsection compares the performance of nominal indirect DDPC (5.4) (N-DDPC), indirect
DDPC with initial condition estimation in Algorithm 5.1 (KF-DDPC), and stochastic indirect
DDPC in Algorithm 5.2 (S-DDPC). Consider the following fourth-order dynamics:

[
A B E
C 0 0

]
=


0.36 0.64 0.07 0.02 0.29 0.03
0.42 0.58 0.02 0.07 0.03 0.20
−9.34 9.34 0.23 0.58 4.90 1.07
5.88 −5.88 0.39 −0.39 1.07 3.48

1 0 0 0 0 0

 . (5.37)

The following parameters are used in the example: L0 = 4, L′ = 10, Q = 20, R = 1, σ2 = σ2
p =

0.01, wt = 0, Σw = 0.001 · I, and p = 0.95. An offline trajectory of length 500 is collected with
unit Gaussian inputs, and the signal matrix is constructed with a Hankel structure, which leads to
M = 487. The disturbances are sampled from an i.i.d. Gaussian distribution of variance 0.001.
The elementwise chance constraints (5.27) are used. The same online noise and disturbance
sequences are used to compare the three algorithms. The minimum-MSE predictor is employed
as the predictor. No input constraint is considered in this example, i.e., Ut = R. Upper and lower
output bounds are specified as the output constraints.

The closed-loop trajectories of the algorithms are presented in Figure 5.10, alongside the reference
trajectory and the output bounds. As observed in Figure 5.10, KF-DDPC outperforms N-DDPC
by introducing the initial condition estimator, although constraint violations are still evident. S-
DDPC further enhances KF-DDPC, particularly in terms of constraint satisfaction. To underscore
the effectiveness of the Kalman filter, Figure 5.11 showcases the comparison between the filtered
output initial conditions and the measured ones for S-DDPC. The filtered trajectory is notably
closer to the true trajectory than the measured trajectory.

The performance is further evaluated quantitatively by 50 Monte Carlo simulations with different
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Figure 5.10: Closed-loop trajectories of indirect DDPC algorithms.
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Figure 5.11: Comparison of the filtered and measured output trajectories.

noise and disturbance realizations. Figure 5.12 shows the boxplots of the true total control cost
Jtot and the total amount of constraint violations, calculated as ∑t max(Htyt,0−qt ,0). The results
validate our observations from Figure 5.10 that our proposed algorithm S-DDPC performs much
better than the nominal algorithm with almost no constraint violation.

5.3 High-Fidelity Simulation Results: Space Heating Control

Finally, we present high-fidelity simulation results tested on a space heating control case study
to evaluate the performance of the proposed stochastic indirect DDPC algorithm against other
DDPC algorithms in practice.

The system considered in this study is a three-room apartment known as the urban mining
and recycling (UMAR) unit in the NEST research building of the Swiss Federal Laboratories
for Material Science and Technology (Empa) in Dübendorf, Switzerland. The unit’s layout is
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Figure 5.12: Boxplots of (a) the true total control cost Jtot and (b) the total amount of constraint
violations.

Room 272

Room 274

Room 273

Figure 5.13: Layout of the UMAR unit with the controlled rooms marked. © Werner Sobek.

illustrated in Figure 5.13. Each room is treated as one thermal zone, and the heating power
is dissipated into the zones through constant volume radiant ceiling panels. The continuous
power set point, determined by the controller, is realized by regulating the valve opening,
which is converted into discrete opening and closing sequences using pulse-width modulation.
Additionally, the space heating control is subject to constraints imposed by occupants’ perception
of comfort. Thermal comfort bounds are expressed as predefined temperature limits in this study.
As the unit is residential, the unit is considered to be unoccupied during the day and occupied
during the night. The definition leads to relaxed temperature constraints during unoccupied hours.
Specifically, the constraints are set to be between 20 ◦C and 26 ◦C from 08:00 to 16:59 and
between 22 ◦C and 24 ◦C from 17:00 to 07:59 of the following day.

The performance of multiple control algorithms is benchmarked on a high-fidelity white-box
EnergyPlus model nestli of the UMAR unit, developed in Khayatian et al. (2022); Bojarski et al.
(2023). The model is constructed based on detailed knowledge of the system layout and the
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heat storage and transfer characteristics of the construction materials. In addition, the model is
calibrated with three-year field measurements. This provides a digital twin of the system for
accurately benchmarking different control algorithms. To actively override variables during the
simulation, the EnergyPlus model is wrapped into a functional mock-up unit and integrated into a
Simulink simulation model.

MATLAB & Simulink simulations are conducted to implement space heating control of the three
main rooms (Rooms 272, 273, and 274 in Figure 5.13) in the UMAR unit using the MATLAB

version of the nestli model. The control sample time is 15 minutes. The three rooms are separately
controlled. For each room, the controller is implemented as follows.

Input. The heating power [kW] is considered as the input ut and is constrained to be positive
and upper-bounded by the maximum heating power. The maximum heating power depends on
the difference between the supply and the return temperatures [◦C]. Since the heating system
is not modeled in this study, constant temperature differences are considered throughout the
control horizon. The input command is implemented by pulse-width modulation of binary valve
positions with a 1-minute resolution.

Output. The room temperature [◦C] is considered as the output yt . Gaussian output noise with a
variance of 0.01 is added to all measurements.

Disturbance. The ambient temperature [◦C] and the global horizontal irradiance [W/m2] are
considered as the disturbances wt . The variances of the ambient temperature and the irradiance
predictions are assumed to be 0.04 and 25, respectively.

Objective. The control objective is to minimize the total energy consumption within the control
horizon, i.e., Jctr = ∥ut∥1.

The following control algorithms are compared in simulation.

SMM-PC. Algorithm 5.2 is applied using the minimum-MSE predictor but without the Kalman
filter.

N4SID. A state-space model of order nx = L0 is identified by subspace identification in the
innovation form: {

x̂t+1 = Âx̂t + B̂ut + Êwt + L̂et ,

yt = Ĉx̂t + D̂ut + et ,
(5.38)

using the MATLAB command n4sid, where Â, B̂, Ĉ, D̂, Ê, and L̂ are the identified model param-
eters, x̂t is the state estimate, and et quantifies the model error whose variance is also estimated
by n4sid. Stochastic MPC with chance constraints described in Oldewurtel et al. (2012) is
implemented by considering both the stochastic model error et and the disturbance uncertainty in
wt . This is a representative control algorithm using the classical system identification paradigm.

BiLevel. The robust bi-level DDPC algorithm presented in Lian et al. (2023) is implemented. The
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algorithm augments the standard indirect DDPC (5.4) with robustness to bounded disturbance
uncertainties and an affine disturbance feedback term (Oldewurtel et al., 2008). Since stochastic
disturbance uncertainties are considered in this work, a high-probability disturbance set w.p. p
is used as the disturbance bound. Note that the online adaptation in Lian et al. (2023) is not
implemented for a fair comparison against other algorithms.

DeePC. The direct DDPC algorithm described in (16) of Dörfler et al. (2023) is implemented
with p = 2. Nominal output constraints are enforced since this approach cannot quantify the
prediction error due to its ill-defined predictor structure.

The following parameters are used for the controllers: L0 = 10 (2.5 h), L′ = 15 (3.75 h), and
p = 0.7. Optimal control problems are solved by Gurobi. In addition, a hysteresis controller is
considered as the baseline.

Historical weather data from November 7 to December 7, 2020, are used to run the simulations.
The offline data used to construct the signal matrix Z are collected from November 7 to November
30, 2020, by running the default hysteresis controller. This corresponds to 2’305 data points. The
data-driven controllers are applied from December 1 to December 7, 2020, after an initialization
phase of 2.5 hours corresponding to the length of L0.

Monte Carlo simulations of 20 runs are conducted for each algorithm with different realizations of
measurement noise and disturbance uncertainties. All the considered predictive control algorithms
perform significantly better than the baseline hysteresis control, with a 20%–27% reduction in
energy consumption and a 30%–93% reduction in constraint violation. So, in what follows, we
focus on benchmarking different predictive control algorithms. Results of energy consumption
and temperature constraint violation for the three controlled rooms are shown in Figure 5.14. It
can be seen that the SMM-PC algorithm outperforms the other algorithms in terms of both energy
consumption and constraint satisfaction for all three rooms. Specifically, compared to N4SID,
BiLevel, and DeePC, SMM-PC reduces the constraint violation by 59%, 77%, and 90% with
an average energy saving of 8%, 6%, and 4%, respectively. A comparison of the closed-loop
input-output trajectories in one representative simulation is shown in Figure 5.15. One can
observe that SMM-PC is more conservative in regulating the room temperature to avoid constraint
violation. It is worth mentioning that the control decisions of SMM-PC are also smoother than
other algorithms, which implies reduced hardware wear in practice.

The SMM-PC algorithm is analyzed more closely in Figure 5.16, where the one-step-ahead
predictions and the tightened bounds of SMM-PC are also plotted for Room 272 as an example.
The tightened bounds for N4SID, calculated offline based on an estimate of the model error, are
also compared. The predicted room temperature is very close to the true room temperature, and
the tightened bounds are more conservative than N4SID, leading to fewer constraint violations.
The same plot for BiLevel is shown in Figure 5.17. Although the prediction accuracy is also
acceptable, BiLevel underestimates the prediction error, leading to more constraint violations.
This is expected since BiLevel is only robust to disturbance prediction errors but not measurement
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Figure 5.14: Boxplots of energy consumption and constraint violation for different predictive
control algorithms.

errors.

In the results presented above, we selected λg = 104 for DeePC, which is the best-performing one
in our tests with λg = 10i, i = 2,3,4,5,6. For this λg choice, the behaviors of BiLevel and DeePC
are similar as shown in Figure 5.15, except that there is no constraint tightening for DeePC.
This validates the statement in Dörfler et al. (2023) that direct and indirect DDPC methods are
equivalent for sufficiently large λg with nominal predictions. However, the DeePC algorithm may
completely fail for small λg values. Figure 5.18 illustrates one scenario where DeePC cannot
provide reasonable temperature control for Room 273 with λg = 102.
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Figure 5.15: Representative input-output trajectories of different predictive control algorithms.

Finally, to further evaluate the reliability of the algorithms, two scenarios with deteriorated
uncertainties are considered: 1) the temperature measurements are less accurate with a ten times
larger output noise variance, and 2) the disturbance prediction is less accurate with ten times larger
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Figure 5.16: Prediction accuracy and constraint tightening of SMM-PC in Room 272.
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Figure 5.17: Prediction accuracy and constraint tightening of BiLevel in Room 272.
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Figure 5.18: Malfunctioning of DeePC with λg = 100 in Room 273.
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Table 5.2: Energy consumption and constraint violation results of different algorithms under
high uncertainties. Scenario 1: high output noise, scenario 2: high disturbance prediction errors.
Values in brackets indicate changes with respect to the nominal results.

(a) Scenario 1: average energy consumption [kWh]

Room 272 Room 273 Room 274

SMM-PC 58.1 (+1.1) 112.4 (+1.4) 52.4 (-0.5)
N4SID 63.3 (+2.2) 132.0 (+5.3) 57.0 (+3.6)
Bilevel 61.5 (+2.0) 127.5 (+8.9) 55.8 (-0.7)
DeePC 59.4 (+0.0) 120.2 (+5.8) 54.4 (-2.8)

(b) Scenario 2: average energy consumption [kWh]

Room 272 Room 273 Room 274

SMM-PC 59.6 (+2.6) 107.1 (-4.0) 53.2 (+0.4)
N4SID 61.1 (+0.0) 129.7 (+3.0) 53.5 (+0.1)
Bilevel 60.0 (+0.5) 126.1 (+7.5) 57.0 (+0.5)
DeePC 59.5 (+0.1) 117.7 (+3.2) 57.2 (-0.1)

(c) Scenario 1: average constraint violation [◦Ch]

Room 272 Room 273 Room 274

SMM-PC 0.25 (-0.16) 1.69 (+0.29) 0.06 (+0.03)
N4SID 0.25 (-0.73) 1.62 (-0.58) 0.47 (-0.83)
Bilevel 3.46 (+0.25) 10.45 (+6.10) 3.82 (+3.15)
DeePC 3.06 (-1.15) 5.62 (-2.36) 1.79 (+1.12)

(d) Scenario 2: average constraint violation [◦Ch]

Room 272 Room 273 Room 274

SMM-PC 0.04 (-0.37) 1.49 (+0.08) 0.04 (+0.00)
N4SID 1.05 (+0.07) 2.02 (-0.17) 1.28 (-0.02)
Bilevel 2.49 (-0.71) 3.33 (-1.02) 0.46 (-0.21)
DeePC 4.00 (-0.21) 7.54 (-0.44) 0.67 (+0.00)

variances for both the ambient temperature and the irradiance. The Monte Carlo simulations are
repeated for these two scenarios, and the results are shown in Table 5.2. It can be observed that
SMM-PC remains the best regarding both energy consumption and constraint violation in both
scenarios. In addition, the performance of SMM-PC in these two scenarios is very consistent
compared to the nominal case despite the increased uncertainties. In contrast, an increase in
energy consumption in Room 273 is observed for the other algorithms. The performance of the
BiLevel algorithm deteriorates significantly in scenario 1, as the algorithm cannot handle large
output noise.
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5.4 Summary

This chapter applies nonparametric data-driven predictors to receding horizon predictive control.
By adopting a linearized signal matrix model predictor with certainty equivalence, the signal
matrix model predictive control algorithm demonstrates superior performance compared to
subspace predictive control and regularized data-enabled predictive control with the possibility to
incorporate online data for improving poor offline data or learning parameter drifts.

The algorithm is then extended to a stochastic control framework with several modifications based
on prediction error characterization. These modifications provide a tuning-free regularizer design
in the control cost, improved initial condition estimation, and reliable constraint satisfaction,
which are achieved by evaluating the expected cost, designing a Kalman filter, and formulating
convex constraint tightening terms, respectively.

The results are verified in high-fidelity simulations of a space heating control example. The pro-
posed stochastic indirect data-driven predictive control algorithm achieves constraint satisfaction
more reliably with less energy consumption than existing data-driven predictive control methods.
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6 Identification of Linear Time-Periodic
Systems

This chapter discusses the problem of identifying linear time-periodic (LTP) systems in both
the time and frequency domains. Lifting and switching methods are available to convert LTP
models to equivalent LTI models for applying LTI identification methods, which is discussed in
Section 6.1. However, the reverse conversion is not trivial. Additional requirements should be
satisfied such that the identified LTI model is realizable to its LTP form.

In the time domain, the atomic norm regularization approach discussed in Chapter 2 is extended to
LTP system identification in Section 6.2 for low-complexity estimation, which uses the switching
reformulation of LTP systems. In this case, the main structural requirement is that the LTI
sub-models should have a consistent model order throughout the period with the exact pole
locations, referred to as the uniformity requirement in what follows. This requirement is difficult
to enforce with existing methods but can be satisfied in the atomic norm regularization framework
with a group lasso regularizer introduced in 2.1.1. In particular, model parameters corresponding
to the same atomic dynamics with the same poles are grouped across LTI sub-models. A case
study and Monte Carlo simulations show that the proposed method effectively estimates uniform
low-complexity LTP models and is superior to existing methods in model fitting under low SNR’s.

In the frequency domain, based on early work from Wereley (1990), harmonic transfer function
(HTF) coefficients are identified in Louarroudi et al. (2012); Yin and Mehr (2009); Allen and
Sracic (2009); Shin et al. (2005) using least-square methods. This approach leads to high-order
nonparametric models. Non-convex optimization methods are used to directly identify state-
space models in Goos and Pintelon (2016), with the drawback that globally optimal estimates
are not guaranteed to be obtained. On the other hand, subspace methods are widely applied to
identifying LTP systems (Wood et al., 2018; Liu, 1997; Felici et al., 2007), but the majority of
works use the time-domain approach described in Verhaegen and Yu (1995) for LTV systems.
A frequency-domain subspace method is proposed by Uyanik et al. (2019) based on frequency
lifting. However, the method is limited to SISO systems with multi-sinusoidal inputs. In addition,
the frequency grid must be specially designed to avoid overlaps between different periodic
harmonics, and model order selection can be problematic under low SNR’s.
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Section 6.3 presents an alternative frequency-domain subspace method that is compatible with
more general inputs and MIMO systems by extending McKelvey et al. (1996) using time-domain
lifting. First, the frequency response of the lifted system is identified by generalized empirical
transfer function estimation (ETFE). By utilizing the frequency response estimates of the lifted
system, the time-aliased periodic impulse response of the original LTP system can be obtained by
a linear map. This leads to an order-revealing decomposition of LTP systems with a block Hankel
structure, followed by a conventional subspace routine that identifies the range space of the
extended observability matrix by SVD. This algorithm is proven to be consistent under a general
class of output noise. Compared to Uyanik et al. (2019), the main advantages are that it can be
applied to MIMO systems and that generic periodic inputs can be used. However, compared
with previous time-domain methods that use arbitrary input-output data sequences, this method
requires an ensemble of periodic identification data that are harmonic with the fundamental
frequency of the system. Finally, the proposed algorithm is compared to time-domain methods
by numerical simulation to show its advantage when using periodic identification data. The
consistency property is also verified in simulation.

6.1 LTP Systems and Their LTI Reformulations

The theory of LTP systems, as well as their LTI reformulations, are briefly reviewed in this
section. See Bittanti and Colaneri (2009) for more detailed explanations.

Consider a strictly causal and stable discrete-time LTP system:{
xt+1 = Atxt +Btut ,

yt = Ctxt + vt ,
(6.1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny , vt ∈ Rny are the states, inputs, and outputs, and output noise,
respectively. The time-varying matrices At = At+T ⋆ , Bt = Bt+T ⋆ , Ct =Ct+T ⋆ are periodic state-
space matrices of appropriate dimensions, where T ⋆ is the period length, which is assumed
known. The stability of LTP systems can be assessed by the spectral radius of the monodromy
matrix ΨA,τ := A(τ − 1)A(τ − 2) . . .A(τ −T ⋆). Bittanti (1986) proved that the eigenvalues of
ΨA,τ are independent of τ and that the system is stable iff the spectral radius ρ(ΨA,τ)< 1. Denote
the collection of unique A-matrices as Ā := col

(
A⊤0 ,A

⊤
1 , . . . ,A

⊤
T ⋆−1

)
, and similarly for B̄ and C̄.

The periodic impulse response of the system is defined as

gt
r :=CtAt−1At−2 . . .At−r+1Bt−r ∈ Rny×nu , (6.2)

where the superscript t denotes the current tag time and the subscript r > 0 denotes the time
difference between the input and the output. Since the dynamics are periodic, gt

r is also T ⋆-
periodic with respect to t. The extended controllability and observability matrices of LTP systems

116



6.1 LTP Systems and Their LTI Reformulations

are defined as

Cτ
s :=

[
Bτ−1 Aτ−1Bτ−2 · · · Aτ−1 . . .Aτ−s+1Bτ−s

]
∈ Rnx×snu , (6.3)

Oτ
s :=


Cτ

Cτ+1Aτ

...
Cτ+s−1Aτ+s−2 . . .Aτ

 ∈ Rsny×nx , (6.4)

respectively.

6.1.1 Lifting and Switching

Lifting and switching are two main reformulations of LTP systems for applying LTI methods.
The lifting method converts the LTP system to a structured T ⋆-times slower LTI system with
T ⋆-times larger input and output dimensions (Bittanti and Colaneri, 2000). The state dimension
remains the same. In the lifted system, the inputs and outputs of one whole period in the LTP
system are concatenated as the augmented inputs and outputs:

ũk := col(ukT ⋆ ,ukT ⋆+1, . . . ,ukT ⋆+T ⋆−1) , (6.5)

and similarly for ỹk and ṽk. The augmented dynamics thus become:{
x̃k+1 = ΨA,0x̃k + C̄0

T ⋆ ũk,

ỹk = O0
T ⋆ x̃k +Ξ ũk + ṽk,

(6.6)

where x̃k := xkT ⋆ is the lifted state,

C̄τ
s :=

[
Aτ−1 . . .Aτ−s+1Bτ−s Aτ−1 . . .Aτ−s+2Bτ−s+1 · · · Bτ−1

]
∈ Rnx×snu (6.7)

denotes the flipped controllability matrix, and

Ξ :=


0 0 0 · · · 0
g1

1 0 0 · · · 0
g2

2 g2
1 0 · · · 0

...
...

...
. . . 0

gT ⋆−1
T ⋆−1 gT ⋆−1

T ⋆−2 gT ⋆−1
T ⋆−3 · · · 0

 (6.8)

indicates the feedthrough term within the period. Due to its natural connection to the subspace
identification formulation, the method is usually used to extend the subspace identification method
(Verhaegen and Yu, 1995).

In the switching method, the LTP system is reformulated as a switched LTI system with T ⋆
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Figure 6.1: Illustration of the switching reformulation of LTP systems.

switches. In detail, the system (6.1) is expressed with the following input-output model:

yt =
∞

∑
l=1

gt
lut−l + vt . (6.9)

For a fixed t, {gt
l}∞

l=1 formulates a valid IIR model of an LTI system as

Gτ(q) :=
∞

∑
l=1

gτ
l q−l :=Cτ(qT ⋆

I−ΨA,τ)
−1Bτ(q), (6.10)

where

Bτ(q) :=
T ⋆−1

∑
i=0

Aτ−1Aτ−2 . . .Aτ+i−T ⋆+1Bτ+i ·qi, (6.11)

q is the forward time-shift operator, and τ = 0,1, . . . ,T ⋆− 1. This is known as the periodic
transfer function of the system (6.1). The models Gτ(q) are called sub-models in the following.
Thus, a periodically switched LTI model of the LTP system can be defined as

yt = yτ
t , t = kT ⋆+ τ, where yτ

t = Gτ(q)ut + vt . (6.12)

See Figure 6.1 for a diagrammatic illustration. Note that the dynamics of each switch Gτ(q)
have precisely the same poles, which are the solutions to fΨ,τ

(
qT ⋆)

= 0, where fΨ,τ(x) is the
characteristic polynomial of ΨA,τ . The solutions are independent of τ because they are the T ⋆-th
roots of the eigenvalues of the monodromy matrix, which are independent of τ . Therefore, for
a uniform LTP system (6.1), the poles in each sub-model are the same. The model order of the
switched sub-systems is then T ⋆nx. This reformulation has been used to estimate HTF’s in Yin
and Mehr (2009).

Comparing both methods, lifting constructs a system that is T ⋆×T ⋆-times larger than the original
system, whereas switching decomposes the system into T ⋆ sub-systems of the same size. The
additional parameters induced by redundant dimensions in lifting are constrained by structural
constraints on the lifted systems, such as causality. These constraints are generally difficult
to enforce in identification but can be exploited in subspace identification as demonstrated in
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Section 6.3. Switching, conversely, preserves the input-output dimensions of the LTP system
at the expense of augmented model orders. This problem is alleviated by using regularization
techniques as shown in Section 6.2, where the computational complexity does not scale with the
model order, as a sufficiently high-order model structure is adopted at the beginning anyway.

6.2 Low-Order Regularization of LTP Systems

In this section, we consider the problem of identifying a uniform low-order switched model (6.10)
of a SISO LTP system from a sequence of input-output data (ut ,yt)

NpT ⋆

t=1 , where Np is the number
of periods observed.

Similar to Chapter 3, the input-output model (6.9) is truncated to a FIR model at a sufficiently
high order, denoted by ng, for tractability. Then, a least squares problem can be formulated to
identify the sub-models independently by minimizing the squared l2-norm of the prediction error:

min
ḡ

JLS

(
ḡ|(ut ,yt)

NpT ⋆

t=1

)
:=

T ⋆

∑
τ=1

Np−1

∑
k=0

[
ykT ⋆+τ −

ng

∑
l=1

gτ
l ukT ⋆+τ−l

]2

, (6.13)

where

ḡ :=
[
ḡ1 · · · ḡT ⋆

]
:=


g1

1 g2
1 · · · gT ⋆

1
g1

2 g2
2 · · · gT ⋆

2
...

...
. . . · · ·

g1
ng

g2
ng
· · · gT ⋆

ng

 ∈ Rng×T ⋆
(6.14)

gathers the parameters in all sub-models.

However, this unregularized problem does not enforce the requirement that the identified system
should be uniform and low-order. This section investigates the extension of low-order regularizers
to LTP systems. We first discuss the common rank regularizer to see why it is not suitable for
LTP system identification. Then, it is shown that a grouped version of atomic norm regularization
can effectively regularize the estimator to be uniform and low-order.

6.2.1 Rank Regularization

One of the most common low-order regularizers is based on the fact that the rank of the extended
observability and controllability matrices gives the McMillan degree of the system. Different
matrices that reveal this rank for regularization have been constructed. In the switched IIR model
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(6.9), the Hankel operator on the impulse responses

HL(ḡt) :=


gt

1 gt
2 · · · gt

ng−L+1

gt
2 gt

3 · · · gt
ng−L+2

...
...

. . .
...

gt
L gt

L+1 · · · gt
ng

 (6.15)

is commonly used as the rank-revealing matrix. As also mentioned in Section 4.3.2, since the
rank function is highly non-convex, its best convex surrogate, the nuclear norm, is applied in
optimization for tractability as in Smith (2014); Fazel et al. (2001). Thus, we have the following
convex nuclear norm regularizer:

RN(ḡ) :=
T ⋆

∑
τ=1

βτ ∥HL(ḡτ)∥∗ , (6.16)

where β := col(β1, . . . ,βT ⋆) is the weighting vector to control sub-model complexity. Note that
the nuclear norm can be seen as the generalization of the l1-norm to matrices.

However, besides its general issue of stability (Pillonetto et al., 2016) and scalability (Shah et al.,
2012), the Hankel nuclear norm regularizer fails to provide an explicit expression for the model
order. This makes it hard to tune different sub-models to the same order, not to mention the
requirement of the same pole locations. As demonstrated in Section 6.2.3, this regularizer often
cannot regularize the sub-systems to any given order despite fine-tuning the weighting vector β .

6.2.2 Grouped Atomic Norm Regularization

In this subsection, the atomic norm regularization discussed in Chapter 2 is adopted on sub-
models to enforce the uniformity requirement while overcoming the stability and scalability
issues of the Hankel nuclear norm regularization. Similar to the LTI case, the sub-models are
decomposed as linear combinations of atoms:

Gτ(q) = ∑
k∈K

cτ
kAk(q)≈

p

∑
i=1

cτ
ki
·Aki(q) =: cT

τ A(q), (6.17)

where the infinite atom set is approximated by fine gridding (ki)
p
i=1 with a vector of atoms

A(q) := col
(
Ak1(q),Ak2(q), . . . ,Akp(q)

)
. The vector cτ := col

(
cτ

k1
,cτ

k2
, . . . ,cτ

kp

)
∈ Cp denotes

the corresponding coefficients, and p is the number of atoms in the grid.

Then the orders of the sub-models are equal to the cardinality of cτ . Using the l1-norm as the
surrogate for the cardinality function, the atomic norm of the system Gτ(q) with respect to A(q) is
defined as ∥cτ∥1. It was shown in Shah et al. (2012) that the atomic norm is a good approximation
of the Hankel nuclear norm.
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6.2 Low-Order Regularization of LTP Systems

As discussed in Section 2.2.1, for real-valued systems, additional constraints on cτ are required:

cτ
ki
= conj

(
cτ

k j

)
, ∀ki = conj(k j), τ = 1,2, . . . ,T ⋆. (6.18)

To apply atomic norm regularization to the combined switched model, the expansion (6.17) is
rewritten in terms of the impulse response matrix as

ḡ = ḡac, (6.19)

where ḡa := [ḡa
1 ḡa

2 . . . ḡa
p] ∈ Rng×p, ḡa

i is the ng-truncated impulse response of Aki(q), and
c := [c1 c2 . . . cT ⋆ ] ∈ Cp×T ⋆

. Note that ḡa is a constant matrix that can be pre-computed. Thus,
we have the following atomic norm regularized optimization problem:

min
c

JLS

(
ḡac
∣∣∣(ut ,yt)

NpT ⋆

t=1

)
+λRA(c), s.t. (6.18), (6.20)

where

RA(c) :=
T ⋆

∑
τ=1

βτ ∥cτ∥1 (6.21)

is the atomic norm regularizer which is the weighted sum of the atomic norms of the sub-models.

The atomic norm regularizer RA(c) guarantees the smoothness and stability of the estimated
system. In addition, problem (6.20) is a QP problem, which has much better scalability compared
to the semidefinite programming (SDP) problem induced by the nuclear norm regularization.
Although the uniformity requirement is still not guaranteed since each sub-model is separately
regularized, the pole location information is now accessible from the estimated parameters c.
This information can be used to propose a uniform regularizer that guarantees the same pole
locations for each sub-model.

The basic idea to modify the previous LTI-based atomic norm regularizer (6.21) to satisfy the
uniformity requirement is to connect the same atom at different tag times. The same atom needs
to be either included in all or excluded from all of the sub-model dynamics. To do this, we first
examine the structure of the parameter matrix c. If the (i, j)-th element in c is non-zero, the
sub-model j has a pole at ki and vice versa. Therefore, in addition to the sparsity requirement
induced by the low-order assumption, each row of c also needs to be either all zero or all non-zero.
This requirement coincides with the concept of grouping in group lasso by considering each row
as a group. So, the following grouped atomic norm regularizer is proposed:

RGA(c) :=
p

∑
i=1

∥∥∥c(i)
∥∥∥

2
, (6.22)

in place ofRA(c) in (6.20), where c(i) denotes the i-th row of c. There is only one hyperparameter
λ for this regularizer instead of a vector of hyperparameters βτ for the previous two regularizers.
In this work, hyperparameters are selected by cross-validation with additional validation data
(uv

t ,y
v
t )

NvT ⋆

t=1 .
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The algorithm for LTP system identification with grouped atomic norm regularization is summa-
rized in Algorithm 6.1.

Algorithm 6.1 LTP system identification with grouped atomic norm regularization

1: Input: T ⋆, (ut ,yt)
NpT ⋆

t=1 , (uv
t ,y

v
t )

NvT ⋆

t=1
2: Select ng, (ki)

p
i=1 and compute ḡa.

3: for λ = λ1 to λnλ
do

4: begin
5: c(λ )← argmin

c
JLS

(
ḡac
∣∣∣(ut ,yt)

NpT ⋆

t=1

)
+λRGA(c), s.t. (6.18)

6: ε(λ )← JLS

(
ḡac(λ )

∣∣∣(uv
t ,y

v
t )

NvT ⋆

t=1

)
7: end
8: λ ⋆← argmin

λ

ε(λ )

9: Output: c⋆ = c(λ ⋆), ḡ⋆ = ḡac(λ ⋆)

Remark 6.1. A similar grouping concept can be extended to MIMO systems, where sub-models
are defined as SISO FIR models for each input-output channel at each tag time. Similarly, the
same atom in all these sub-models should have consistent sparsity and thus be grouped.

6.2.3 Numerical Results

This section compares the grouped atomic norm method with other LTP system identification
schemes. First, a variable-length pendulum system is examined to show the effectiveness of
the grouped atomic norm method in estimating uniform low-order models, in contrast to other
low-order methods. Furthermore, Monte Carlo simulation demonstrates that the proposed method
fits the true system better than other regularized methods. It also outperforms the time-domain
subspace identification method under low SNR’s.

The following five identification schemes for LTP systems are compared. The first four methods
use the switched FIR model of order ng = 100. The least squares method (LS) solves the problem
(6.13). The Hankel nuclear norm method (Hank ) solves the regularized least squares problem
with the regularizer (6.16). The Hankel matrices are constructed with L = 20. The atomic norm
method (Atom) solves the problem (6.20). Our proposed method, the grouped atomic norm method
(GAtom), modifies the problem (6.20) with the grouped regularizer (6.22). The atom set used in
Atom and GAtom is defined by the poles k =α exp( jβ ), where α = [0.02 : 0.02 : 0.98 0.99 0.999],
β = 0 : π/50 : π in the MATLAB notation, as suggested in Pillonetto et al. (2016). This gives
a total of p = 2601 poles. The widely-used subspace identification method (Sub) proposed in
Verhaegen and Yu (1995) is also compared, where the model order determined by singular value
truncation is selected by cross-validation over a uniform order grid between 2 to 10. This method
uses the lifting reformulation.

The optimization problems are solved by MOSEK. In terms of computational time, LS and Sub
are the fastest by solving unconstrained least squares problems; Hank is slower than Atom and
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6.2 Low-Order Regularization of LTP Systems
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Figure 6.2: Illustration of the variable-length pendulum system.

GAtom because of its SDP nature. The difference is more significant as the period length T ⋆ and
the data length NpT ⋆ increase.

Case study of a variable-length pendulum. Consider a variable-length pendulum shown in
Figure 6.2 with a periodic length profile L(t) = L0 + l cosωt. The non-linear dynamics of the
system are given by

ψ̈ =− g
L(t)

sinψ +
2ωl sinωt

L(t)
ψ̇ +

1
mL(t)

F cosψ. (6.23)

The following parameters are used: L0 = 10, l = 5, m = 5, g = 9.8, and ω = 4π . This system
is modeled as a discrete-time SISO LTP system at small ψ , with F as the input and ψ as the
output. The period length T ⋆ is selected as 4 with a sampling time of Ts = 2π/(T ⋆ω). A data set
of length NpT ⋆ = 500 is simulated with unit Gaussian inputs ut ∼N (0,1) and Gaussian output
noise vt ∼N (0,σ2), σ2 = (0.1π/180)2 for identification.

First, we try to obtain a uniform low-order model by fine-tuning sub-model complexity coeffi-
cients βτ in Hank and Atom. In this example, βτ is selected from a 100-point logarithmic grid
between 10−1 and 101, and λ is fixed to 1. The relations between the βτ values and the estimated
model orders are shown in Figure 6.3. It can be seen that since the model order is indirectly
controlled by coefficients βτ with no explicit expression, the sub-models cannot be regularized to
any given order for both Hank and Atom. This makes it hard to tune the sub-model orders to be
uniform, especially as T ⋆ increases. In contrast, GAtom always gives a uniform estimation for
any choice of the scalar hyperparameter λ with the same grid, as shown in Figure 6.4. These
uniform models can then be selected by cross-validation.

Monte Carlo simulation. To compare the fitting performance of the proposed method with other
methods, a Monte Carlo test campaign is set up as follows.

A bank of 100 low-order discrete-time SISO LTP systems of period length T ⋆ = 2 is generated.
The model orders are randomly selected between 2 and 10. Continuous-time dynamics at each tag
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Figure 6.3: Estimated sub-model orders with sub-model complexity tuning.
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Figure 6.4: Estimated sub-model orders with GAtom.

time are generated by the MATLAB function rss. These continuous-time systems are sampled
at three times their bandwidths and discretized by zero-order hold equivalence. They are also
normalized to have a steady-state gain of 1. The resulting LTP systems are verified to be stable.

The systems are excited by unit Gaussian inputs ut ∼N (0,1). The outputs are perturbed at two
different output noise levels with vt ∼N (0,σ2), σ2 = 0.1,0.01. The initial states of the systems
are set to 0. Two data sets of length NpT ⋆ = 500 are generated for identification and validation,
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6.3 Frequency-Domain Subspace Identification of LTP Systems

respectively. The hyperparameter λ in the regularized methods is cross-validated over a 10-point
logarithmic grid between 10−1 and 101. The sub-model complexity is not tuned (βτ = 1) for
Hank and Atom, as this tuning is complicated to automate and often impractical to unify the
orders of sub-models as can be seen from the case study.

Similar to (1.8), the performance of the estimators is assessed by comparing to the true model
with the following fitting metric:

W := 100 ·

1−

[
∑

T ⋆

τ=1 ∑
ng
i=1(g

τ
i − ĝτ

i )
2

∑
T ⋆

τ=1 ∑
ng
i=1(g

τ
i − ḡ)2

]1/2
 , (6.24)

where gτ
i are the true impulse response coefficients in model (6.9), ĝτ

i are the estimated coefficients,
and ḡ is the mean of the true coefficients. The impulse response coefficients of the state-space
model obtained by Sub are calculated by (6.2) for performance comparison.

The results of Monte Carlo simulation are demonstrated by statistics in Table 6.1 and boxplots
in Figure 6.5, under the low (σ2 = 0.01) and the high (σ2 = 0.1) noise levels. It is shown that
under both noise levels, the LS method cannot give satisfactory estimates. Under the high noise
level, the LS estimation even fails to provide any information about the system with a negative
average fitting. Comparing the three regularized methods, our proposed GAtom method achieves
the best model fitting by incorporating the requirement on pole locations. Atom performs better
than Hank due to its guaranteed stability.

The Sub method has an advantage over GAtom under the low noise level with a higher mean fitting
and a lower standard deviation. This is because the subspace identification gives a consistent
estimator that converges to the true value in the noise-free case, whereas regularized methods are
generally inconsistent. Nevertheless, the advantage of GAtom in model fitting is observed under
the high noise level.

Table 6.1: Statistics of fitting performance.

σ2 = 0.01 σ2 = 0.1
LS Hank Atom Sub GAtom LS Hank Atom Sub GAtom

Mean 21.4 68.6 70.6 78.8 71.7 -106.1 47.8 52.6 48.7 55.6
Median 42.7 80.4 83.5 84.5 84.5 -79.5 53.3 59.5 56.8 64.2

Std 86.2 37.8 38.5 22.6 39.9 203.5 36.5 36.2 48.3 34.1

6.3 Frequency-Domain Subspace Identification of LTP Systems

In this section, we consider the problem of estimating a state-space LTP model that is equivalent
to (6.1) up to a similarity transform. A total of J input-output data sequences are collected with
periodic inputs of length NpT ⋆, where J ≥ nuT ⋆. The inputs, outputs, and output noise of the i-th
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Figure 6.5: Comparison of fitting performance under different noise levels.

data sequence are denoted by ui
t , yi

t , and vi
t with the lifted versions indicated by ũi

k, ỹi
k, and ṽi

k,
respectively. The following mild assumptions on the output noise are considered in this section.

Assumption 6.1. The output noise is zero mean and stationary with fast-decaying covariances,

∞

∑
τ=1

∣∣τ ·E(ṽi
k,pṽi

k−τ,p
)∣∣≤ cp, (6.25)

where ṽi
k,p is the p-th element of ṽi

k and cp is a finite constant. The noise is also i.i.d. across
different data sequences and not correlated with the inputs.

To develop a frequency-domain subspace identification method for LTP systems based on the
frequency response of the lifted system, we first examine the subspace algorithm for LTI systems.
This is briefly summarized as follows based on the uniformly-spaced data case in McKelvey et al.
(1996).

Suppose M frequency response data points Gk ∈Cny×nu , k = 0,1, . . . ,M−1 of an LTI system are
given on uniformly-spaced frequencies ωk = 2πk/M. First, apply the inverse discrete Fourier
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transform (IDFT) on Gk,

ht :=
1
M

M−1

∑
k=0

Gk · exp
(

j
2πtk

M

)
, t = 1,2, . . . ,M. (6.26)

The sequence ht is then the time-aliased impulse response of the system,

ht =
∞

∑
i=0

gt+iM. (6.27)

Based on this result, the block Hankel matrix of ht has the following decomposition that reveals
the order of the system:

H :=


h1 h2 · · · hr

h2 h3 · · · hr+1
...

...
. . .

...
hq hq+1 · · · hr+q−1

=


C

CA
...

CAq−1

(I−AM)−1
[
B AB · · · Ar−1B

]
, (6.28)

where rank(H) = nx if qny,rnu ≥ nx. Thus, the extended observability matrix of the system can
be identified up to a similarity transform from the range space of H by SVD and truncation. The
order of the estimated system can be determined by thresholding or cross-validation.

This method is extended to the lifting reformulation of LTP systems in the following subsections.

6.3.1 Frequency Response of Lifted LTP Systems

An important characteristic of LTP systems is that, unlike LTI systems, an input with spectral
content at frequency ω would generate an output response not only at ω , but also at a series
of other harmonics ω + 2kπ/T ⋆, k ∈ Z (Wereley, 1990). Thus, the frequency response at a
particular frequency ω is not a complex gain but a function Gω(ω +2kπ/T ⋆) of k. This function-
valued frequency response can be estimated at individual frequencies with a technique known as
frequency lifting (Uyanik et al., 2019). However, this method is very restrictive in input design
in that only carefully designed multi-sinusoidal inputs can be applied to ensure no overlap of
harmonics with different input frequency contents. This work considers a time-lifted method
for arbitrary periodic inputs of length NpT ⋆. As will be seen in Section 6.3.2, this method helps
extend the available frequency-domain subspace identification algorithm to LTP systems.

In particular, the frequency response matrix of the lifted LTI system G(e jωk) is used as the
frequency response data of the original LTP system. It is shown in Section 4.3 of Bittanti and
Colaneri (2000) that the frequency response of the lifted system is given by

Gl,m(e jωk) =
∞

∑
s=0

gl
sT ⋆+l−m exp(− jωks), (6.29)
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where Gl,m(e jωk) ∈ Cny×nu denotes the (l,m)-th block element of G(e jωk) and ωk =
2πk
Np

, k =

0,1, . . . ,Np−1. The frequency dependence may be omitted for simplicity in what follows. Due
to the strict causality assumption of (6.1), gt

r = 0 for all non-strictly-causal impulse response
coefficients, that is, for r ≤ 0.

Despite its LTI structure, frequency response estimation of the lifted MIMO system is not a trivial
problem as conventional methods such as swept-sine and multi-sines (Dobrowiecki et al., 2006)
do not apply to lifted LTP systems as the input channels cannot be excited separately, since they
come from the same input sequence. Therefore, we first present the following generalized ETFE
Ĝ(e jωk) from an ensemble of time-domain identification data with periodic inputs.

Apply the discrete Fourier transform (DFT) on the lifted inputs and outputs of each experiment:

Ui(e jωk) :=
Np−1

∑
n=0

ũi
n exp

(
− j

2πnk
Np

)
, (6.30)

and similarly for Yi(e jωk). Then, the frequency response estimate is given as

Ĝ(e jωk) := Ỹ (e jωk)Ũ†(e jωk), (6.31)

where
Ũ(e jωk) :=

[
U1(e jωk) U2(e jωk) . . . UJ(e jωk)

]
, (6.32)

and similarly for Ỹ (e jωk). Here, for the right pseudoinverse to be well defined, Ũ(e jωk) needs to
have full row rank, which requires J ≥ nuT ⋆.

The estimate (6.31) generalizes the ETFE for the SISO case

Ĝ(e jωk) =
Y (e jωk)

U(e jωk)
(6.33)

with multiple experiments to satisfy the persistency of excitation requirement for MIMO systems.
Lemma 6.1 shows that this estimate has similar properties to the ETFE, i.e., it is unbiased with
bounded covariances, and the estimation errors are independent across different frequencies. Note
that for notational simplicity, a multiple-input single-output (MISO) structure is considered in the
proof, but the same properties hold for the MIMO system with the covariance of the vectorized
Ĝ(e jωk).

Lemma 6.1. Under Assumption 6.1, the frequency response estimate (6.31) has the following
properties:

1. E
[
Ĝ(e jωk)

]
= G(e jωk);

2. cov
[
Ĝ(p)

]
=
(
Φvp +ρp(Np)

)(
Ũ†
)HŨ†, where Ĝ(p) denotes the p-th row of Ĝ, Φvp is the

power spectral density of the p-th element of ṽi
k, and |ρp(Np)| ≤ 2cp/Np; and

3. estimates at different frequencies are independent.
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Proof. Define the DFT of the output noise sequences as Ṽ (e jωk) similar to Ũ(e jωk) and Ỹ (e jωk).
Decompose the lifted MIMO system into nyT ⋆ MISO systems with

G(e jωk) =: col
(

G(1)(e jωk),G(2)(e jωk), . . . ,G(nyT ⋆)(e jωk)
)
, (6.34)

and similarly for Ĝ(e jωk). Then, with periodic inputs, we have

Ỹ (p)(e jωk) = G(p)(e jωk)Ũ(e jωk)+Ṽ (p)(e jωk), (6.35)

Ĝ(p)(e jωk) = G(p)(e jωk)+Ṽ (p)(e jωk)Ũ†(e jωk), (6.36)

where Ỹ (p)(e jωk), Ṽ (p)(e jωk) denote the p-th row of Ỹ (e jωk), Ṽ (e jωk), respectively. With zero-
mean noise, the estimate is unbiased

E
[
Ĝ(p)(e jωk)

]
= G(p)(e jωk)+E

[
Ṽ (p)(e jωk)

]
Ũ†(e jωk) = G(p)(e jωk). (6.37)

The covariance of the estimate is given by

E
[(

Ĝ(p)(e jωk)−G(p)(e jωk)
)H(

Ĝ(p)(e jωm)−G(p)(e jωm)
)]

=
(
Ũ†(e jωk)

)HE
[(

Ṽ (p)(e jωk)
)H

Ṽ (p)(e jωm)

]
Ũ†(e jωm).

(6.38)

From Section 6.3 of Ljung (1999) and the independence across different experiments, we have

E
[(

Ṽ (p)(e jωk)
)H

Ṽ (p)(e jωm)

]
=

{(
Φvp(e

jωk)+ρp(Np)
)
I, ωk = ωm

0, ωk ̸= ωm
. (6.39)

Substituting (6.39) into (6.38) completes the proof.

6.3.2 Order-Revealing Decomposition for LTP Systems

With the frequency response of the lifted system estimated, the order-revealing decomposition
analogous to (6.28) can be developed for LTP systems.

Take the IDFT of the (l,m)-th block element of Ĝ(e jωk) in (6.31),

wl,m(n) :=
1

Np

Np−1

∑
k=0

Ĝl,m(e jωk)exp
(

j
2πnk
Np

)
=

1
Np

Np−1

∑
k=0

∞

∑
s=0

gl
sT ⋆+l−m exp

(
− j

2π(s−n)k
Np

)
.

(6.40)
Since the summation over k is on the whole unit circle, it is only non-zero when s−n = iNp, i∈Z.
We have

wl,m(n) =

∑
∞
i=0 gl

(iNp+n)T ⋆+l−m, nT ⋆+ l−m > 0,

∑
∞
i=0 gl

(iNp+Np+n)T ⋆+l−m, nT ⋆+ l−m≤ 0.
(6.41)
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Define the time-aliased periodic impulse response as

ht
r :=

∞

∑
i=0

gt
r+iNpT ⋆ , r = 1,2, . . . ,NpT ⋆. (6.42)

According to the definition of gt
r (6.2), ∀p = 0,1, . . . ,r−1,

ht
r =CtAt−1 . . .At−p

(
I−Ψ

Np

A,(t−p)

)−1
At−p−1 . . .At−r+1Bt−r. (6.43)

Therefore, the periodic block Hankel matrix of ht
r can be decomposed as follows

Hτ
p :=


hτ

1 hτ
2 · · · hτ

r

hτ+1
2 hτ+1

3 · · · hτ+1
r+1

...
...

. . .
...

hτ+T ⋆−1
q hτ+T ⋆−1

q+1 · · · hτ+T ⋆−1
q+r−1

=Oτ
q

(
I−Ψ

Np
A,τ

)−1
Cτ

r , (6.44)

where q+ r−1≤ NpT ⋆. By selecting q,r such that qny,rnu ≥ nx, we have

rank
(
Hτ

p
)
= rank

(
Oτ

q
)
= rank

((
I−Ψ

Np
A,τ

)−1
)
= rank(Cτ

r ) = nx. (6.45)

Note that the rank requirements on q and r put a lower bound on Np. Then the range space
of Hτ

p coincides with that of Oτ
q . Thus, Oτ

q can be identified, up to a similarity transform, by
performing SVD on Hτ

p . From the extended observability matrix, the matrices Ā and C̄ can be
estimated by the same shifting method as in the time-domain subspace identification of LTP
systems (Verhaegen and Yu, 1995). The input matrix B̄ can be estimated by least-squares fit to
the time-aliased impulse response.

6.3.3 Algorithm & Consistency Analysis

Built on the decomposition (6.44), we propose Algorithm 6.2 for frequency-domain subspace
identification of LTP systems with periodic inputs.

The computational complexity of Algorithm 6.2 is dominated by solving the least squares problem
(6.47), which has a complexity of O

(
n2

x ·n2
u ·Np ·T ⋆2). The consistency of Algorithm 6.2 is shown

in Theorem 6.1.

Theorem 6.1. Let At , Bt , and Ct define the minimal LTP state-space model (6.1). Let Ât , B̂t ,
and Ĉt be the estimated state matrices by Algorithm 6.2. Under Assumption 6.1, there exist
non-singular periodic matrices Tt ∈ Rnx×nx , Tt = Tt+T ⋆ such that, w.p. 1,

lim
Np→∞

∥∥∥∥∥
[

At Bt

Ct 0

]
−

[
Tt+1 0

0 I

][
Ât B̂t

Ĉt 0

][
T−1

t 0
0 I

]∥∥∥∥∥
F

= 0, (6.50)

for a fixed choice of q,r.
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Algorithm 6.2 Frequency-domain subspace identification of LTP systems with periodic inputs

1: Lift the input-output data ui
t , yi

t to ũi
k, ỹi

k for k = 0, . . . ,Np−1 and i = 1, . . . ,J, as in (6.5).
2: Estimate the frequency response Ĝ(e jωk) of the lifted system from ũi

k, ỹi
k by (6.30) and (6.31).

3: Apply the IDFT on each block element Ĝl,m(e jωk) of Ĝ(e jωk) according to (6.40) and denote
it as ŵl,m(n).

4: Construct the time-aliased periodic impulse response
{

ĥt
r
}

for r = 1, . . . ,NpT ⋆ and t =
0, . . . ,T ⋆−1 by rearranging elements in ŵl,m(n) according to (6.41) and (6.42).

5: Construct Ĥτ
p for τ = 0, . . . ,T ⋆−1, according to (6.44).

6: Calculate the SVD of Ĥτ
p for τ = 0, . . . ,T ⋆−1: Ĥτ

p = Ûτ Σ̂τV̂⊤τ .
7: Determine a model order nx and define Ûτ :=

[
Û s

τ Ûo
τ

]
, where Û s

τ ∈ Rqny×nx .
8: The estimated state-space model is given as

Âτ = (J1Û s
τ+1)

†J2Û s
τ , Ĉτ = J3Û s

τ , τ = 0, . . . ,T ⋆−1, (6.46)

ˆ̄B = argmin
B̄

NpT ⋆

∑
r=1

T ⋆−1

∑
τ=0

∥∥ĥτ
r − Q̂τ

r Bτ−r
∥∥2

F , (6.47)

where

J1 :=
[
I 0(q−1)ny×ny

]
, J2 :=

[
0(q−1)ny×ny I

]
, J3 :=

[
I 0ny×(q−1)ny

]
, (6.48)

Û s
T ⋆ = Û s

0, Q̂τ
r := Ĉτ

(
I−Ψ

Np

Â,τ

)−1
Âτ−1 . . . Âτ−r+1. (6.49)

Proof. Let ∆G(e jωk) := Ĝ(e jωk)−G(e jωk), ∆wl,m(n) := ŵl,m(n)−wl,m(n). We have

∆wl,m(n) =
1

Np

Np−1

∑
k=0

∆Gl,m(e jωk)exp
(

j
2πnk
Np

)
, (6.51)

which can be seen as the sample mean of zero-mean independent random variables (McKelvey
et al., 1996). From Lemma 6.1, we know that the covariances of the random variables are
bounded. Thus, according to the law of large numbers,

lim
Np→∞

∆wl,m(n) = 0, w.p.1, (6.52)

Then let ∆ht
r := ĥt

r−ht
r, ∆Hτ

p := Ĥτ
p −Hτ

p . We have limNp→∞ ∆ht
r = 0, w.p. 1, which implies that,

for τ = 0,1, . . . ,T ⋆−1,
lim

Np→∞

∥∥∆Hτ
p

∥∥
F = 0, w.p.1. (6.53)

Let
∥∥∆Hτ

p

∥∥
F ≤ ε . According to the proof of Lemma 4 in McKelvey et al. (1996), there exist a

matrix Pτ satisfying ∥Pτ∥F ≤ 4ε/σnx(H
τ
p) and a non-singular matrix Tτ such that

Û s
τ = (U s

τ +Uo
τ Pτ)Tτ , (6.54)
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where Hτ
p = [U s

τ Uo
τ ]ΣτV⊤τ is the SVD of Hτ

p . Then, we have

Tτ+1ÂτT−1
τ =

(
J1(U s

τ+1 +Uo
τ+1Pτ+1)

)† J2(U s
τ +Uo

τ Pτ), ĈτT−1
τ = J3(U s

τ +Uo
τ Pτ). (6.55)

Note that J1U s
τ+1Aτ = J2U s

τ and Cτ = J3U s
τ . Then, from Theorem 5.3.1 in Golub and Van Loan

(2012) on the sensitivity of the least squares estimate, for a sufficiently small ε such that the
regressor does not lose rank, there exists constants cτ ,c′τ , such that∥∥Tτ+1ÂτT−1

τ −Aτ

∥∥
F ≤ cτε,

∥∥ĈτT−1
τ −Cτ

∥∥
F ≤ c′τε. (6.56)

For the estimate ˆ̄B in (6.47), let

Qτ
r :=Cτ

(
I−Ψ

M
A,τ
)−1

Aτ−1 . . .Aτ−r+1. (6.57)

Then, a simple calculation shows that∥∥Q̂τ
r T−1

τ−r+1−Qτ
r

∥∥
F = O(ε). (6.58)

Since ∆ht
r = O(ε), again from Theorem 5.3.1 in Golub and Van Loan (2012), for a sufficiently

small ε , ∥∥Tτ−r+1B̂τ−r−Bτ−r
∥∥

F = O(ε). (6.59)

The above equation, together with (6.53) and (6.56), completes the proof.

6.3.4 Numerical Results

This subsection tests the proposed algorithm against multiple time-domain subspace identification
algorithms for LTP systems with two numerical examples. Example 1 is based on the flapping
dynamics of wind turbines, which is taken from Felici et al. (2007). The true dynamics of the
system are given by

[
A0 B0

C0 0

]
=

 0 0.0734 −0.07221
−6.5229 −0.4997 −9.6277

1 0 0

 ,[ A1 B1

C1 0

]
=

 −0.0021 0 0
−0.0138 0.5196 0

0 0 0

 ,
where nx = 2, ny = nu = 1, T ⋆ = 2. Example 2 is used in Hench (1995) with the dynamics

[
A0 B0

C0 0

]
=

 1 1 0
0 2 1
1 0 0

 ,[ A1 B1

C1 0

]
=

 1
5 1 0
0 2

5 1
2 0 0

 ,[ A2 B2

C2 0

]
=

 3 1 1
0 1 2
1 1 0

 ,
where nx = 2, ny = nu = 1, T ⋆ = 3. Both systems are then normalized to have an average
steady-state gain of 1.

The compared algorithms are: 1) Algorithm 6.2 in this paper (Freq), 2) the MOESP algorithm in
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Figure 6.6: Errors in the periodic impulse response estimation for example 1.
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Figure 6.7: Errors in the periodic impulse response estimation for example 2.

Verhaegen and Yu (1995) (MOESP), 3) the intersection algorithm in Hench (1995) (Int), and 4)
the CCA algorithm in Lemma 9.2 of Cox (2018) specialized for LTP systems (CCA).

In both examples, the following simulation configuration and parameters are used. For each
input-output data sequence, the systems are excited by periodic input of i.i.d. unit Gaussian
entries ut ∼N (0,1) from zero initial conditions. The outputs are contaminated with i.i.d. unit
Gaussian noise v(t)∼N (0,1). The identification data are collected with Np = 50, J = 10 ·T ⋆

after the transient effect becomes negligible. The number of block rows q for the Hankel matrices
in all methods is selected by cross-validation. The model order nx is assumed to be known.

The identification results are shown in Figures 6.6 and 6.7 for examples 1 and 2, respectively, in
terms of the absolute estimation errors of the periodic impulse responses gτ

r , as the state-space
matrices depend on unknown similarity transforms. In example 1, the system is autonomous at
τ = 1, so only the impulse responses at τ = 0 are shown. As seen from both figures, the estimation
error of the proposed method is smaller than that of the other three time-domain methods. In
particular, for example 2, the time-domain methods fail to provide a meaningful estimation of the
system, whereas the proposed frequency-domain method can still obtain reasonable results.

To quantitatively assess the performance of the identification schemes, 100 Monte Carlo sim-
ulations with different noise realizations were conducted for both examples using the same
performance metric W as in Section 6.2.3. The boxplots for both examples are shown in Fig-
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ure 6.8. In both examples, the proposed method has a better fitting performance compared to the
time-domain methods.
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(a) Example 1 (b) Example 2

Figure 6.8: Comparison of fitting performance with Monte Carlo simulations.

The above results demonstrate that the proposed method performs better than the time-domain
methods when periodic input-output data are available. This advantage is mainly because it
makes use of the periodic nature of the identification data. This gives the complete input history
of the system or, in other words, the initial condition, whereas in the time-domain method, past
inputs are assumed unknown.

Finally, we demonstrate the consistency property proved in Theorem 6.1 by conducting Monte
Carlo simulations of example 1 with increasing data length Np. The results are shown in
Figure 6.9, where the estimation error is characterized by the MSE of the periodic impulse
response estimate. It can be seen that the estimate is consistent with a convergence rate of 1/Np.
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Figure 6.9: MSE of the frequency-domain subspace estimate under different data lengths.

6.4 Summary

This chapter presents two methods for identifying linear time-periodic (LTP) systems. The first
method uses grouped atomic norm regularization on linear time-invariant (LTI) sub-models from
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6.4 Summary

the switching reformulation. An essential requirement for the identification to be successful is
that the sub-models should have the same pole locations. Therefore, the atomic norm regularizer
for LTI systems is extended to LTP systems with the group lasso technique to impose this
additional structural constraint. This method obtains uniform low-order models of LTP systems,
and simulations show it has a better model fit than existing methods under high noise levels. The
main message of this work is that the LTP system identification problem cannot be fully tackled
by LTI system theory. The key to enhancing the performance of LTP system identification is
incorporating specific structural constraints arising from periodicity with appropriate frameworks.

The second method uses periodic identification data to extend the frequency-domain subspace
identification algorithm to the lifted LTP system. This method applies a two-step approach:
the generalized ETFE of the lifted system is first obtained from the identification data. The
time-aliased periodic impulse response derived from the lifted frequency response is used to
construct an order-revealing decomposition of the original LTP system, from which the general
framework of subspace identification can be utilized. The proposed algorithm complements the
available subspace identification algorithms for LTP systems and shows an advantage in model
fitting from numerical simulation when periodic data are available.
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7 Identification of Limit Cycle Dynam-
ics with Periodic Models

This chapter identifies limit cycle dynamics in nonlinear systems with linear periodic models.
To obtain a local model close to the limit cycle, direct linearization around the limit cycle is
conducted in Allen and Sracic (2009). However, this approach fails to capture the dynamics
along the limit cycle, i.e., the velocity at which the perturbed trajectories traverse the points on
the limit cycle while converging to it. In this work, the dynamics are first decomposed onto the
so-called transverse coordinates (Manchester, 2011). Next, the dynamics around the limit cycle
are modeled as a periodic system parametrized with the location on the limit cycle. The system
can be approximated near the limit cycle with a locally linearized model known as the linear
periodically parameter-varying (LPPV) model.

This approach translates the limit cycle identification problem into a periodic function learning
problem of system matrices, which is often solved by basis function decomposition onto a higher
dimensional nonlinear feature space. The kernel method allows this mapping to be done implicitly
by specifying the corresponding infinite-dimensional Hibert space with a kernel function. The
system matrices can then be estimated in this function space with ridge regularization. Such
methods have been previously used for nonparametric identification of LPV systems in Laurain
et al. (2012) with an input-output model and Rizvi et al. (2018) with a state-space model. This
chapter extends the method proposed in Rizvi et al. (2018) with a separate kernel design for each
element of the system matrices, and the periodicity in the learned system matrices is enforced via
periodic kernel design. In addition, the flexibility of kernel design makes it possible to include
additional system parameters in the model by augmenting the periodic kernel with standard
non-periodic kernels.

The algorithm is first tested on the Van der Pol oscillator. The identified model is demonstrated to
be close to analytical linearization when training data are close to the limit cycle and outperforms
analytical linearization in terms of prediction accuracy when the training data are close to the
prediction task. Then, the algorithm is applied to a simplified kinematic model of a tethered kite
controlled to fly along a periodic figure-of-eight trajectory for airborne wind energy generation
(Ahrens et al., 2013). Accurate predictions can be obtained with an additional system parameter.
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Chapter 7. Identification of Limit Cycle Dynamics with Periodic Models

The proposed method performs significantly better than global nonlinear identification without
knowledge of the limit cycle.

7.1 Transverse Dynamics of Limit Cycles

In this section, the background of the limit cycle and its transverse dynamics are summarized.
See Hale (1980); Manchester (2011) for detailed definitions and derivations.

Consider a nonlinear system described by a set of ordinary differential equations (ODE’s):

ẋ = f (x,d), (7.1)

where x ∈ Rnx is the state vector and d ∈ Rnd is the exogenous input. The autonomous solution
of this system, i.e., ẋ = f (x,0), starting from an initial condition x(0) = x0 is denoted by x(t) =:
Φ f (x0, t). The system exhibits limit cycle behaviour if it has a T ⋆-periodic solution x⋆(t) =
Φ f (x⋆0, t), i.e., T ⋆ > 0 is the minimum period such that the relationship x⋆(t) = x⋆(t + T ⋆)

holds for all t. Then, the limit cycle is defined as Γ⋆
f := {x ∈ Rnx : x = x⋆(τ)|τ ∈ [0,T ⋆)},

where τ ∈ [0,T ⋆) parametrizes the location on the limit cycle. In this study, we consider
asymptotically stable periodic orbits. The periodic orbit Γ⋆

f is said to be asymptotically stable if
it fulfills Lyapunov stability, i.e., ∀ε > 0, ∃δ > 0 such that ∀x0 ∈ Rnx with dist(x0,Γ

⋆
f )< δ , we

have dist
(

Φ f (x0, t),Γ⋆
f

)
< ε , ∀ t > 0 and limt→∞ dist

(
Φ f (x0, t),Γ⋆

f

)
= 0, where dist(x,Γ⋆

f ) :=
infy∈Γ⋆

f
||y− x||2 defines the distance from a point to the orbit.

At each τ , an (nx−1)-dimensional hyperplane S(τ) that is transversal to Γ⋆
f can be constructed,

i.e., ẋ⋆(τ) /∈ S(τ). The transversal hyperplanes are uniquely defined by normal vectors denoted by
z(τ). The transversality condition can be rewritten in terms of the normal vector as z(τ)⊤ẋ⋆(τ)>
0, ∀τ ∈ [0,T ⋆). On this hyperplane, a new coordinate system is defined such that the origin is
x⋆(τ), and the coordinate axes can be chosen as any orthonormal basis that spans the surface S(τ).
The coordinates of a given state x ∈ S(τ) in this new coordinate frame are denoted by x⊥ ∈ Rn⊥ ,
where n⊥ := nx−1. Thus, a mapping of the state to its transverse coordinates is created for a
given family of transversal surfaces moving along the periodic orbit: x→ (x⊥,τ). The collection
of the basis vectors of S(τ) defines a projection operator Π(τ) := [ξ1(τ) . . . ξn⊥(τ)]

⊤ ∈ Rn⊥×nx

that characterizes the transformation to the transverse coordinates:

x⊥ = Π(τ)(x− x⋆(τ)), (7.2)

and the inverse relationship is
x = x⋆(τ)+Π(τ)⊤x⊥, (7.3)

since Π(τ)Π(τ)⊤ = I due to the orthonormality of the basis vectors.

The most straightforward choice of these hyperplanes S(τ) is then those that are orthogonal to
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the orbit, i.e., the normal vectors are set to be tangential to the flow as

zorth(τ) :=
ẋ⋆(τ)
||ẋ⋆(τ)||2

. (7.4)

However, this choice leads to singularities, especially around τ sections where the curvature of
the orbit is large (Manchester, 2011). These singularities violate the so-called well-posedness
condition that arises from the nonlinear τ dynamics. This condition restricts the region where
the transformation to transverse coordinates is well-defined. An alternative set of surfaces is
considered, originally proposed in Ahbe et al. (2022). These surfaces, referred to as center
surfaces, connect x⋆(τ) with a fixed center (e.g., the geometric center of the limit cycle) with the
first basis vector ξ1(τ) being

ξ
center
1 (τ) :=

x⋆(τ)− xc

||x⋆(τ)− xc||2
, (7.5)

where xc represents the designated center point. The normal vector zcenter(τ) can be consequently
determined by minimizing the angle between the center surface and the orthogonal surface, i.e.,
zcenter(τ) is selected as the projection of zorth(τ) onto the plane that is normal to ξ center

1 (τ).

The corresponding hyperplane must first be determined to convert a state x to its transverse
counterpart (x⊥,τ). The problem can be reformulated as finding the τ that satisfies the hyperplane
equation and minimizes the distance between x and the corresponding point on the limit cycle:

min
τ
||x− x⋆(τ)||2,

s.t. z(τ)⊤(x− x⋆(τ)) = 0.
(7.6)

Using the transformations established in (7.2) and (7.3), when the nonlinear model (7.1) is known,
the dynamics of the transverse states can be analytically obtained (Manchester, 2011):

ẋ⊥ = τ̇

[
d

dτ
Π(τ)

]
Π(τ)⊤x⊥+Π(τ) f (x⋆(τ)+Π(τ)⊤x⊥)−Π(τ) f (x⋆(τ))τ̇, (7.7a)

τ̇ =
z(τ)⊤ f (x⋆(τ)+Π(τ)⊤x⊥)

z(τ)⊤ f (x⋆(τ))− dz(τ)
dτ

⊤
Π(τ)⊤x⊥

, (7.7b)

where the aforementioned well-posedness condition is given by

z(τ)⊤ f (x⋆(τ))− dz(τ)
dτ

⊤
Π(τ)⊤x⊥ ̸= 0. (7.8)

The transverse dynamics can be further linearized at x⊥ = 0 and lead to an affine model in the
following form:

ẋ⊥ = A(τ)x⊥+B(τ)d, (7.9a)
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Figure 7.1: Effects of transversal surface selection. (a),(b): trajectory simulations, (c),(d): τ

dynamics at a sharp turn, (a),(c): orthogonal transversal surfaces, (b),(d): center transversal
surfaces.

τ̇ = 1+g(τ)x⊥+h(τ)d, (7.9b)

where A(τ) : [0,T ⋆)→ Rn⊥×n⊥ , B(τ) : [0,T ⋆)→ Rn⊥×nd , g(τ) : [0,T ⋆)→ R1×n⊥ , and h(τ) :
[0,T ⋆)→ R1×nd are periodically-varying matrix functions of τ .

Example 7.1. (Comparison of transversal hyperplane design) Consider the nonlinear benchmark
system known as the Van der Pol oscillator, described by:

ẋ1 = x2, (7.10a)

ẋ2 = µ(1− x2
1)x2− x1 +Dsin(ωt), (7.10b)

where a sinusoidal forcing term is added, corresponding to the external input d in (7.9). It is
well-known that this nonlinear system has a stable limit cycle. The damping coefficient µ is set to
1, which results in a limit cycle with period T ⋆ = 6.663.

In Figure 7.1, nonlinear trajectories generated from (7.10) with D = 0, denoted by x(t), are
compared to those obtained from the analytical transverse linear approximation xlin(t) using (a)
orthogonal, and (b) center surfaces (the center point xc is chosen as the origin). For orthogonal
surfaces, the well-posedness condition (7.8) is violated around the sharp turn where the surfaces
clash into each other, which causes a discontinuity in the τ dynamics (Figure 7.1(c)). Around
these regions, the transverse linear dynamics become unstable for large x⊥ values (Figure 7.1(a)).
This undesired behavior is prevented by using center surfaces, where the linear dynamics τ̇lin can
effectively approximate τ̇ (Figure 7.1(d)). These observations prompt the use of center surfaces
for approximating local limit cycle dynamics with LPPV models.

In this work, the nonlinear dynamics (7.1) is unknown, and we are interested in identifying the
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locally linearized model of the transverse system (7.9) by collecting training data of the original
state trajectories, their time derivatives, and the exogenous inputs, namely {x(tk), ẋ(tk),d(tk)}N

k=1.
It is also assumed that the periodic orbit Γ⋆

f is known. This becomes a function learning problem
of periodic matrix functions A(τ),B(τ),g(τ),h(τ).

Remark 7.1. Note that if x is on the limit cycle, i.e., x⊥ = 0, τ would be equal to t when no
exogenous input is applied. Otherwise, the τ dynamics would differ from t, and the transverse
model encapsulates this behavior. The LTV approach in Allen and Sracic (2009) adopts the
following LTV model which ignores the τ dynamics (7.9b): ˙̃x = Ã(t)x̃+ B̃(t)d, where x̃(t) :=
x(t)− x⋆(t). This can lead to a large discrepancy in trajectories when the magnitude of x⊥ is
large.

7.2 Identification of Linear Periodically Parameter-Varying Models

This section introduces a kernel-based method for identifying the linearized transverse model of
the limit cycle dynamics (7.9).

The dynamics (7.9) can then be compactly rewritten as:

ζ = Ω(τ)θ , (7.11)

where θ :=
[
x⊤⊥ d⊤

]⊤ ∈ Rnθ , where nθ := n⊥+nd , ζ :=
[
ẋ⊤⊥ τ̇−1

]⊤ ∈ Rnx , and

Ω(τ) :=

[
A(τ) B(τ)
g(τ) h(τ)

]
: [0,T ⋆)→ Rnx×nθ . (7.12)

To obtain θ(tk), ζ (tk), and τ(tk) from the collected trajectory data, problem (7.6) is solved for
each τ(tk) by a nonlinear solver initialized from τ(tk−1). The transverse coordinates x⊥(tk)
are then computed using the projection in (7.2). Finally, the time derivatives of the transverse
states (ẋ⊥(tk), τ̇(tk)) can be calculated from ẋ(tk) using the nonlinear analytical expressions
from Theorem 1 in Manchester (2011). Thus, the transformed dataset {θ(tk),ζ (tk),τ(tk)}N

k=1 is
obtained.

7.2.1 Kernel-Based Identification

In this subsection, we approach the function learning problem using the basis decomposition
interpretation introduced in Section 3.1. Assume that the underlying function can be decomposed
into a set of basis functions:

Ωi(τ) =
nψ

∑
m=1

wi
mψ̄

i
m(τ) =WiΨ̄i(τ), (7.13)
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where Ωi(τ) denotes the i-th row of Ω(τ), ψ̄ i
m(τ) : [0,T ⋆)→ R1×nθ represent the preselected

vector-valued basis functions, wi
m ∈ R are the associated weights, and

Ψ̄i(τ) := col
(

ψ̄
i
1(τ), . . . , ψ̄

i
nψ
(τ)
)
, Wi :=

[
wi

1 . . . wi
nψ

]
(7.14)

collect the basis functions and the weights, respectively. The matrix Ψ̄i(τ) is also known as the
feature map in machine learning literature. Each row Ωi(τ) of the system matrix is considered
separately and solved independently.

The learning problem is then posed as a regularized least-squares problem:

min
Wi

N

∑
k=1

(
ζi(tk)−WiΨ̄i(τ(tk))θ(tk)

)2
+λi||Wi||22, (7.15)

where a ridge regularization term is applied with a weight of λi ∈ R. The predictions of state
derivatives ζi is denoted as

ζ̂i(tk) :=WiΨ̄i(τ(tk))θ(tk). (7.16)

Problem (7.15) can be solved directly. However, selecting the basis functions Ψ̄i(τ) is not trivial,
and the dimension nψ is typically very large to achieve a good prediction accuracy. Instead, the
kernel method is used to reformulate the problem. In detail, by formulating the dual problem
of (7.15), it has been shown that the optimal solution of the weights Wi lies in the span of the
training data (Rizvi et al., 2018; Tóth et al., 2011):

Wi =
N

∑
k=1

αi,kθ(tk)⊤Ψ̄i(τ(tk))⊤, (7.17)

where αi,k ∈ R are the coefficients associated with each training point. The predicted ζi can thus
be expressed as

ζ̂i(tk′) =
N

∑
k=1

αi,kθ(tk)⊤Ψ̄i(τ(tk))⊤Ψ̄i(τ(tk′))θ(tk′). (7.18)

Then, problem (7.15) can be reformulated in terms of αi := [αi,1 αi,2 . . . αi,N ]
⊤, which only

depends on the inner product of the feature map K̄i(τ,τ
′) := Ψ̄i(τ)

⊤Ψ̄i(τ
′) ∈ [0,T ∗)× [0,T ∗)→

Rnθ×nθ instead of Ψ̄i(τ) itself. This inner product function K̄i(·, ·) is known as the kernel function.
Since nψ is usually much larger than nθ , it is often easier to directly design K̄i instead of Ψ̄i to
avoid explicitly choosing the map while still implicitly working with features of higher or infinite
dimensions. The idea of replacing the inner product of the feature map with the kernel function
is known as the kernel trick (Schölkopf, 2001). Substituting the kernel into (7.18), we obtain

ζ̂i(tk′) =
N

∑
k=1

αi,kθ(tk)⊤K̄i(τ(tk),τ(tk′))θ(tk′). (7.19)

Assuming that the elements of the system matrices can be modeled independently from each
other, the kernel functions K̄i are designed as diagonal matrices, i.e., K̄i = diag(ki,1,ki,2, . . . ,ki,nθ

),
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where scalar kernels ki, j : [0,T ⋆)× [0,T ⋆)→R are designed for each system matrix element Ωi, j.
This kernel design generalizes Rizvi et al. (2018) where the same kernel is used for each element,
i.e., K̄i = kiI.

Remark 7.2. The matrix-valued kernel function K̄i(·, ·) can also be directly designed as a full
matrix to model correlations between the elements in Ωi (Álvarez et al., 2012). However, this is
beyond the scope of this thesis.

Then, the predictions on all training points can be expressed as [ζ̂i(t1) ζ̂i(t2) . . . ζ̂i(tN)]⊤ =: ϒiαi,
where the (k,k′)-th element of ϒi ∈ SN

+ is constructed as (ϒi)k,k′ = θ(tk)⊤K̄i(τ(tk),τ(tk′))θ(tk′).

Define the collection of state derivative measurements as Zi := [ζi(t1) ζi(t2) . . . ζi(tN)]
⊤. The

solution to problem (7.15) can then be indirectly given by the closed-form solution of αi:

αi = ϒ̄
−1
i Zi, where ϒ̄i := ϒi +λiI (7.20)

through the transformation (7.17). Finally, the system matrix estimates are retrieved as

Ω̂i(τ) =
N

∑
k=1

αi,kθ(tk)⊤K̄i(τ(tk),τ). (7.21)

Remark 7.3. As discussed in Section 3.1, the identified system matrix function (7.21) can also
be interpreted as 1) the MAP estimate with the prior knowledge that Ωi(τ) is sampled from a GP
with covariance function K̄i(·, ·), or 2) the solution to the regularized function learning problem
within the RKHS associated with the kernel K̄i(·, ·), denoted byHK̄i

(Schölkopf, 2001):

min
Ωi∈HK̄i

N

∑
k=1

(ζi(tk)−Ωi(τ(tk))θ(tk))
2 +λi||Ωi||2HK̄i

. (7.22)

7.2.2 Periodic Kernel Design

Since the system matrices are periodic, the periodic kernel design first proposed in MacKay
(1998) is used to design ki, j. Periodic kernels of period T ⋆ can be constructed by applying the
warping χ(τ) =

[
sin(2π

T ⋆ τ) cos(2π

T ⋆ τ)
]⊤ to any standard kernel. For example, consider the squared

exponential (SE) kernel described by

kSE
i, j (τ,τ

′) := exp

(
−||τ− τ ′||22

2l2
i, j

)
, (7.23)

where li, j are the hyperparameters, known as the length scale, which control the smoothness of
the function estimates. The corresponding periodic kernel is then obtained by substituting τ and
τ ′ with χ(τ) and χ(τ ′), respectively, and rearranging using trigonometric identities:

kPSE
i, j (τ,τ ′) := exp

(
−

2sin2( π

T ⋆ (τ− τ ′))

l2
i, j

)
. (7.24)
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Note that for any τ− τ ′ = mT ∗, m ∈ Z, kPSE
i, j (τ,τ ′) = 1. This means that the function values at

τ and τ ′ are perfectly correlated, so the functions learned with such kernels are periodic with
period T ⋆.

The maximum marginal likelihood method introduced in Section 3.2 is again used to identify the
hyperparameters in this problem (Rasmussen and Williams, 2006), which are the length scales
li := [li,1 . . . li,nθ

]⊤ ∈ Rnθ associated with each kernel and the regularization parameters λi:

min
li,λi

− log p(Zi|{θ(tk),τ(tk)}N
k=1, li,λi), (7.25)

where the logarithmic marginal likelihood function is given by

p(Zi|{θ(tk),τ(tk)}N
k=1, li,λi) = exp

(
−1

2
Z⊤i ϒ̄

−1
i Zi−

1
2

logdetϒ̄i + const.
)
. (7.26)

7.2.3 Extension to Additional Model Parameters

The above identification method can be extended to the case where the system is operated around
different operating points, such that the dynamics are also parameter-varying with additional
parameter p:

ẋ = f (x,d; p). (7.27)

In terms of the transverse dynamics, (7.27) implies an additional dependence on p for the
limit cycle x⋆(τ, p) and the linearized model ζ = Ω(τ, p)θ . The kernel method provides a
straightforward way to incorporate such dependence in identification as multivariate functions
can be learned by multiplying kernels (Rasmussen and Williams, 2006). In our case, to model
the dependence on p, the periodic kernel can be multiplied with a standard kernel. For example,
for SE kernel, the following multiple kernel can be designed:

kMulti

([
τ

p

]
,

[
τ ′

p′

])
:= kPSE(τ,τ ′)kSE(p, p′). (7.28)

The proposed identification algorithm is summarized in Algorithm 7.1.

7.3 Numerical Results

7.3.1 Van der Pol System

The identification algorithm is first tested on the Van der Pol system (7.10) described in Exam-
ple 7.1. Two sets of data, D1 and D2, are generated for identification, which contain trajectories
starting from x⊥(t0) = 0.1 and x⊥(t0) =−0.5, respectively. For both sets, the forcing term is set
to D = 1 and ω = 10ω⋆, where ω⋆ = 2π

T ⋆ , and zero-mean Gaussian noise with an SNR of 40 dB
is injected to the state and state time-derivative measurements. Center transversal surfaces with
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Algorithm 7.1 Kernel-based identification of local limit cycle dynamics with LPPV models

1: Input: training data {x(tk), ẋ(tk),d(tk)}N
k=1, limit cycle Γ⋆

f
2: Select transversal surfaces S(τ) and construct corresponding projection operators Π(τ).
3: Find {x⊥(tk),τ(tk)}N

k=1 by (7.6) and (7.2).
4: Find {ẋ⊥(tk), τ̇(tk)}N

k=1 by Theorem 1 in Manchester (2011).
5: for i = 1 to nx do
6: begin
7: Find li,λi by solving (7.25) with kernel design (7.24).
8: Find Ω̂i(τ) by (7.20) and (7.21).
9: end

10: Output: transverse system matrix estimate Ω̂

xc = 0 are used. In this example, the computation time is around 4s on an Intel Core i7-9750H
processor at 2.60GHz, which is dominated by the hyperparameter estimation step (7.25).

Figure 7.2 displays the identified system functions from D1 and D2, denoted by Ω̂(τ)(1) and
Ω̂(τ)(2), respectively, alongside the analytical transverse linear system functions derived from
linearizing the nonlinear system ODE’s, indicated by Ω(τ). For D1, where the training data are
close to the limit cycle, the identified model matches the analytical one linearized at x⊥ = 0 well.
Predictions on a test trajectory with x⊥(t0) =−0.5, τ(t0) = 1.5, D = 0.5, ω = 20ω⋆ are shown
in Figure 7.3 (a) in the phase space, and (b) as time series plots of x⊥ and (τ− t). It is observed
that Ω̂(τ)(2) outperforms the other models in terms of prediction error since the trajectory to be
predicted is close to the dataset D2. This indicates that the identification performance improves
when the training data is chosen close to the regions where the predictions are to be made and
can even be superior to an analytical linearization with a known nonlinear model.

7.3.2 Airborne Wind Energy System

Tethered kites are a type of novel power generation systems that exploit the aerodynamic lift
generated by the wind. This idea was first proposed in Loyd (1980), and there have been
many experimental developments on this topic recently (Ahrens et al., 2013). Under a periodic
reference trajectory designed for optimal energy generation, the whole closed-loop system can be
considered a periodic system.

A tethered kite system with ground-based power generation during the traction phase is investi-
gated as a physical system example, as illustrated in Figure 7.4. The kite’s position is expressed
by the elevation angle θ , the azimuth angle φ , and the line length r. The unicycle kinematic
model from Wood et al. (2015) is considered:

θ̇ =
v
r

cos(γ), φ̇ =
v

r cos(θ)
sin(γ), γ̇ = u. (7.29)

where x = [θ φ γ]⊤ are the state variables and u is the steering input. The parameters v and r are
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Figure 7.2: Comparison of the identified LPPV models for the Van der Pol system using different
training datasets. Ω(τ): analytical model, Ω̂(τ)(1), Ω̂(τ)(2): identified models using D1 and D2,
respectively.

Figure 7.3: Trajectory prediction results of the Van der Pol system, shown (a) in the phase space,
and (b) as time series plots of x⊥ and (τ− t).
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Figure 7.4: Illustration of the tethered kite system and its state variables (Ozan, 2021).

Figure 7.5: Identified LPPV models for the tethered kite system with v
r parametrization. Case 1:

v
r = 0.11, case 2: v

r = 0.27.

assumed to be constant over one cycle. The kite is controlled on a figure-of-eight path for efficient
power generation by setting γ⋆(τ) = acos(ω⋆τ +b), where the frequency ω⋆, the amplitude a,
and the phase b are determined from the desired midpoint angles and system dynamics (Wood
et al., 2015). The control law is designed as transverse state-feedback following Manchester
(2011); Ahbe et al. (2018):

u(τ) = u⋆(τ)+u⊥(τ) = u⋆(τ)−K⋆(τ)x⊥(τ). (7.30)

The nominal control input u⋆(τ) and the controller gains K⋆(τ) are computed off-line, and a
periodically time-varying LQR controller is designed using the linearized periodic system matrix
A(τ) with Q = I, R = 1. The associated periodic differential Riccati equation (Bittanti et al.,
1991) is solved with the one-shot algorithm (Johansson et al., 2007).
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Figure 7.6: Trajectory prediction results of the tethered kite system for v
r = 0.27, shown (a) in the

phase space of θ and φ , and (b) as time series plots of x⊥,1. Pred Ω̂(τ): identified multivariate
model, Pred Ω̂med(τ): identified model without v

r parametrization.

The kite system is simulated with a limit cycle of ω⋆ = 0.8, θ ⋆(0) = π

4 , φ ⋆(0) = π

4 . During
the traction phase, the line length r and the kite velocity v change as the line reels out. As a
result, the model parameter v

r varies during operation, and both the limit cycle and the dynamics
around it would alter. The variations with respect to v

r can be captured by modifying the
periodic SE kernel to the multivariate case as described in Section 7.2.3. Algorithm 7.1 with
the extended kernel design (7.28) is applied on trajectory data from different operating points
( v

r ∈ {0.3,0.2154,0.1625,0.1263,0.1}), where the training dataset consists of 16 trajectories
from random initial conditions with ||x⊥(t0)||2 = 0.02. Zero-mean Gaussian noise is added to
the state and state time-derivative measurements with an SNR of 60 dB. No exogenous input is
applied, i.e., d = 0. The computation time in this example is around 1080s.

Figure 7.5 displays the identified models for two parameter values not used in training: v
r = 0.11

(case 1) and v
r = 0.27 (case 2), with A11(τ) and g2(τ) as examples. The estimates Ω̂(τ) are very

close to the analytically linearized functions Ω(τ). A prediction trajectory is generated for case
2 from a random initial condition with ||x⊥(t0)||2 = 0.1. Figure 7.6(a) shows the predictions in
the phase space of θ and φ using the identified model. For benchmarking, the prediction using
a black-box kernel support vector machine (SVM) model, which directly learns the nonlinear
function (7.27), is also compared. The proposed method accurately predicts the true nonlinear
trajectory and performs significantly better than the black-box kernel-SVM method without the
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knowledge of the limit cycle. In Figure 7.6(b), the identified model Ω̂(τ) is further compared with
a model Ω̂med(τ) identified only from the data at v

r = 0.1625. The multivariate model obtains
better predictions than the model without v

r parametrization.

7.4 Summary

A new kernel-based method to identify the local limit cycle dynamics is presented in this chapter.
By decomposing the dynamics onto transverse coordinates, local nonlinear dynamics around
the limit cycle can be captured by linear approximation of the transverse dynamics with a linear
periodically parameter-varying model. The periodic model parameters are identified using the
kernel method with periodic kernel design. This framework can be naturally extended to include
model variations due to changing operating conditions by leveraging the flexibility of kernel
design.
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8 Conclusions and Outlook

This thesis investigates how the classical paradigm of system identification and model-based
control should evolve in response to the rapid advances in machine learning and data science,
as well as the challenges imposed by complex systems with limited domain knowledge. One
of the critical steps in this evolution is to develop new tools in automatic control that employ
nonparametric and high-dimensional approaches instead of compact parametric models.

In Part I of the thesis, plant models are still identified but with general high-dimensional model
structures along with regularization techniques. In Chapter 2, an infinite-dimensional sparse
learning problem is formulated by characterizing the sparse pole locations of the system with
atomic norm regularization. A computationally tractable algorithm is developed to solve the
infinite-dimensional problems, followed by iterative weighting and stability selection to reduce
the bias and the false positives of the estimate, respectively. This high-dimensional identification
framework provides a promising method for identifying linear models with accurate pole location
estimation.

In Chapter 3, direct model complexity control is enforced in kernel-based identification by
adopting a novel multiple kernel design with optimal first-order kernels and a sparse hyperprior.
Reliable error bounds are also derived for kernel-based identification under the practical scenario
that the hyperparameters are unknown. Both contributions enlarge the applicability of models
identified using the kernel-based method by providing a low-dimensional model realization and a
trustworthy uncertainty model, respectively.

In Part II of the thesis, conventional models are replaced by input-output mapping that directly
predicts output trajectories from the signal matrix of collected data. In Chapter 4, two methods
to obtain well-defined input-output mapping in the presence of unbounded uncertainties are
proposed, by solving a low-rank Hankel matrix denoising problem and a maximum likelihood
estimation problem, respectively. Superior noise reduction performance is achieved in matrix
denoising by exploiting a data-driven singular value shrinkage law with Hankel approximation.
The signal matrix model derived from the maximum likelihood estimation framework provides
accurate impulse response estimation with less restrictive assumptions than the conventional
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least-squares method. The nominal prediction from the signal matrix model is also augmented
with confidence region characterization, providing an uncertainty model. These contributions
provide a practical framework to develop and analyze data-driven predictors with stochastic data.

Chapter 5 investigates the application of data-driven predictors to receding horizon predictive
control. By adopting the linearized signal matrix model predictor with certainty equivalence,
indirect data-driven predictive control demonstrates improved performance compared to subspace
predictive control and regularized data-enabled predictive control. The algorithm is extended by
including the uncertainty model of the predictor to provide more accurate prediction and guar-
anteed constraint satisfaction with initial condition estimation and chance constraint tightening,
respectively. As illustrated in a space heating control case study, the proposed stochastic indirect
data-driven predictive control algorithm shows great potential for providing excellent control
performance while satisfying operating constraints in practice.

In Part III of the thesis, the methodologies are extended to periodic systems. Chapter 6 focuses
on the identification of linear time-periodic systems. In the time domain, the atomic norm
regularization approach is extended to periodic systems by considering grouped coefficients of
the reformulated switching models. In the frequency domain, a subspace identification method is
developed by investigating the frequency responses of the lifted periodic system model. Both
methods demonstrate that periodic systems can be successfully identified by integrating structural
constraints in applying identification methods to their linear time-invariant reformulations.

Chapter 7 utilizes linear periodic models to model local limit cycle dynamics of nonlinear systems.
By linearizing the nonlinear dynamics along the limit cycle, the local dynamics can be learned as
a nonlinear periodic function by kernel learning with a periodic kernel design. This methodology
can be employed to characterize the closed-loop performance of periodically operating control
systems, as demonstrated by an airborne wind energy example.

The following future research directions are presented as an outlook.

Bayesian perspective of behavioral system theory. The Willems’ fundamental lemma is
based on binary certification of possible system behaviors. However, as mentioned in Chapter 4,
no trajectory can be falsified when only stochastic data with unbounded noise are available.
Therefore, a Bayesian description may be preferred which describes possible system behaviors
as the posterior probability of observing a certain trajectory given the collected data. This
perspective leads to a stochastic version of behavioral system theory, which can support a unified
framework of direct data-driven denoising, prediction, and control.

Active Exploration in data-driven predictive control. Section 5.1.4 demonstrates that data-
driven predictors can be adaptive, incorporating online data to enhance control performance. This
enables dual-control design in data-driven predictive control by actively exploring regions that
result in predictions with high uncertainties. A possible framework in this direction is Bayesian
optimization, employing methods like the upper confidence bound policy (Garivier and Moulines,
2011).
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Nonlinear data-driven predictive control via Koopman operator. Although the Willems’
fundamental lemma heavily relies on the linearity assumption, it can be extended to nonlin-
ear systems by leveraging their linear representations. This direction has been explored for
Hammerstein-Wiener models (Berberich and Allgöwer, 2020). The Koopman theory can provide
linear representations of general nonlinear systems, and data-driven predictive control can be
conducted on the Koopman observables. The main difficulties in this direction are 1) how to
satisfy the data informativity condition for potentially infinite-dimensional linear representations
and 2) how to quantify the prediction error associated with the Koopman operator approximation.
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