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System identification: ‘classical’ data-driven control

* Most control applications are data-driven
® ... but were restricted by control design tools — model

Paradigm of system identification

Black box . Nominal model
Low-order approx. Certainty equivalence
Data Model Controller
Grey box > Uncertainty model
Parameter estimation Robust/stochastic
control

ETHzlirich  Automatic Control Laboratory September 21,2023  1/34



From system identification to learning

In practice, modeling & identification take up the majority of the budget
Challenge: much more complex systems
e ... but, we also have much more data

¢ |s it stressed enough? ~ 5 sessions on identification in CDC
® ... 20+ sessions on ‘learning’

Main difference: Do we have/require a compact structure for the model?

Two paths: 1. Borrow tools from learning theories
2. Accept over-parameterized models
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Path 1: Preserve systems theory properties in learning

Example 1: Learn pole locations

e First-order model decomposition +
sparse learning

ARX
e ... but with infinitely many features _ AdpiniA

Example 2: Learn limit cycle dynamics

¢ |ocal approximation around limit

cycle + kernel learning CaEY L N T

. i- (‘* i ‘.‘_ / Proposed

® ... but with local convergence 07tk N A e Backbon prea

(stability) and known periodicity e

0'%.2 04 06 08 1 12 14
o ¢ [rad]
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Path 2: Model is merely input-output mapping

Idea: for linear systems,

¢ Any linear combination of trajectories is still a trajectory
¢ |f we have sufficiently ‘good’ data. . .
e ... linear combinations of such data cover all possibilities

— Willems’ Fundamental Lemma
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Willems’ fundamental lemma

® Any linear combination of

Data: g L .
trajectories is still a trajectory
Z = [zd O } ~ signal matrix , o
! M g Vg € RM, Zgis a valid trajectory
d
ugl ggz T Utny .- . s
U1 Ut T Uiyt * If we have sufficiently ‘good’ data. . .
: : : : There are (n, L + n,) DoF for a
d d d - i
ol el length-L trajectory
- yd yd ... yd
g o2 R If rank(Z) = n,L+n, covers all DoF
Yt +1 Ytorr 0 Yty
: : ' : e ... linear combinations of such
4 4 J e
il o vl o data cover all possibilities
columns of length- L trajectories v valid trajectory z, Hg c RM, z=2g
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In a world without noise. ..

e |f we fix all DoF with inputs u € Rl & initial condition uj,; € R™Lo,
yini € R0, we can predict the other outputs

¢ |nput-output mapping based on WFL

U

Uin; U, Up

y = f(Wini, yini) : |Yini| = | Yo |9, ¥ =Yg Z = Yf

u Uy p

Yy

e ... is a well-defined function since rank (2) = n, L + n,, but implicit &

overparametrized
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Directly into predictive control

Receding horizon control at time ¢:

min  Jetr (Ut’ yt)
ut

t
Wip Up
s.t. yfm = 1Y, ¢, yt= Yfgt, u ey, yte)t
u’ Uy
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Today’s agenda

What if we have uncertainties?

e What are the paths going from noise-free data to stochastic data?
¢ |s there an optimal predictor we can use?

e Can we quantify the prediction error and use it to robustify the controller?

Where is the observer in data-driven predictive control?

Does the algorithm hold in practice with nonlinearity?
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Today’s agenda

e What are the paths going from noise-free data to stochastic data?

ETHzlirich  Automatic Control Laboratory September 21,2023  9/34



. until noise ruins everything

What if we have uncertainties? Three paths out:

* 7 :full row rank almost surely 1. Subspace identification: recover rank

* y can be anything condition rank (Z) = n, L + n,

Uijni Up 2. Direct data-driven predictive control:
Vy € RwL/ g Yini| _ |Yp g accept ill-defined predictor & regularize
’ u Uy prediction in control
y Yy

3. Indirect data-driven predictive control:
¢ |ll-defined input-output mapping accept full-rank Z and fix one unique g
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The three paths

. . Problems
e Subspace identification:

structured low-rank denoising problem
e Computationally hard

Z=12y+oE, rank(Zo)=rnuL +ns, e Equivalent to SysID paradigm

mZin E (HZ - ZOH;) s.t. Z e struct(Z)

* Direct DDPC: * Hyperparameter tuning

. 2 2 . .
min Joy (u',y) 42 |10 gth et - vl | Not eXPIICIthapplng
—_—— (interpretability)
pred. error initial cond. mismatch
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Indirect data-driven predictive control
e Predictor as an optimization problem with some useful g criterion

g' = argmin HYg—y?- ’
g p ni S

initial cond. mismatch ~ Pred. error

¢ Predictive controller as a bi-level optimization problem
min Jor (u',y') st(), ¥ =Ypg' ul et ¥t € V!
u

¢ Explicit closed-form mapping ~ signal matrix model

t
Ui

g = [Rl Ry Ra} u |, ¥y =Y
y?ni
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Today’s agenda

Is there an optimal predictor we can use?
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‘Optimal’ g ... Butin what sense?

Even for very simple uncertainty: i.i.d Gaussian output noise of variance o2
e _..avery special parameter estimation problem

Ui U,
— Noise on both sides: |yini| = | Y, | ¢
u Uf

— Non-unique true parameter g, (constitute a subspace)
— Error evaluated on an unknown projection Y;g

Many statistical tools won’'t work
e Our approach: maximum likelihood estimation
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Maximum likelihood estimation

¢ Find the g that optimizes the likelihood of observing the predicted output
trajectory y

.
L Yp9 = ¥ini
minimize  logdet(%,(9))  + 0 v 0

2—1(9) [YZDQ — Yini

Uncertainty of prediction

« [5-5)

=y oo 1 8

* Non-convex even for this simple uncertainty

Deviation from past output measurements
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A practical approximation

¢ Assume independent entries in Y),, Y. cov [vec (L{D = 2|
f

¢ One-step SQP for the MLE program is

2 2 u?ni— _|Up
SNl st [ut AL

g = argmin Y9 - ¥l
Up Tt

L/
where \ = < 7 + L)
Hgln|H2
ini

* gini: initialization point, can be selected as ¢~! or | Y, yf?i
Uy u
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Signal matrix model predictive control

[ I DecPC SMM-PC — — —MPC - Ref
05rx  » s s - 0.4

Y

) S . S 04
0 20 40 60 80 100 120 100 120
t t

Figure: Closed-loop trajectory comparison. DeePC: direct DDPC with optimal tuning,
SMM-PC: proposed, MPC: ideal MPC with no noise
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Today’s agenda

e Can we quantify the prediction error and use it to robustify the controller?
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Quantify prediction errors

¢ Consider the set of all reasonable predictors:

U, Ui
flu)=Yrg, |Us|lg= u
Y, Vini + 0

YZ?ZYI?O+EP7 Yy :YfQ+Ef7 Yini :y%iﬁLEim

calo ][ ¢ 1
* Two sources of error: =

y—yo=1T ((5 + €ini — Epg) + Efg CAL-1| |0 ALo—1

initial condition mismatch  noise in Yy ~ autonomous transformation

matrix from yjito y
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Theorem: Statistics of stochastic data-driven predictors

The stochastic predictor is given by

Ely] =y, cov(y) =X
where
y=Y;g—T (Yp9 — ¥ini)
5 =02 lgll3 (TTT +1) + T Syl

e Exact distribution requires unknown model parameter T'

e ... but can be estimated by a data-driven approach (and assume certainty
equivalence)

e Linearmap I'ld = f(u = 0;uj,; =0, )
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Chance constraint satisfaction

¢ Unlike usual uncertainty assumptions, error depends on inputs via g
e Chance constraints P (hly' < ¢!) > p, Vi=1,...,n. (A) is non-convex

Lemma: Convex surrogate of chance constraints

(A) is guaranteed by second-order cone constraints
b=t t t s
hiy Sqi—,u(cl-l-CzHgH2>, Vi=1,...,n.

where

¢ = VBT Syl T (b)), ey = o/ht 00T + 1) ()T, =/ — 1

ETH:zirich Automatic Control Laboratory September 21,2023  21/34



Stochastic version of SMM predictive control

expected output cost E |:Hyt—rt ”Z]

min o[+ = o
U-?ni
s.t. gt = [R1 Ry Rg} u
y?ni
¥ =Yg —T(Ypg' - yini)
hiy' < qf —p (61 + ¢ HgtH2> Ni=1,...,n.,
ut el

® )\, =0o’tr (Q(ITT 4+ 1)) resembles the regularization in direct DDPC
g
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Beyond confidence region
* Mean-squared error can also be computed
MSE(g,6) = 8TTTT5 +1r (o2 g3 (TTT +1) + T SyimlT)

e Minimum MSE predictor
f()=Y; argmgin MSE (g, 9)

Up Ui
s.t. Uf g = u
Y, Yini + 0

Implications:
¢ Characterize the optimal data-driven predictor in terms of MSE
e Propose a new data-driven predictor by replacing I" with '
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Today’s agenda

Where is the observer in data-driven predictive control?
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Towards better initial condition. ..

* In standard DDPC, the initial condition y, is directly measured
= constant covariance = measurement error

* In MPC, the initial condition z; is estimated from both measurement y; and
previous prediction z;,_,
= diminishing error covariance

e Idea: Update y},; with Kalman-filtered measurement from previous prediction
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Kalman filter for data-driven input-output mapping

¢ Data-driven input-output mapping as a non-minimal state-space model

Tty

<t+1

-|

= [0 In] T +w =y o=y

Ame
0

e A: upper shift operator
® cl: one-step-ahead prediction error with covariance (1, 1)
e w,: measurement error with variance o2

e Standard Kalman filter design can be done
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Signal matrix model predictive control (v2)

——-Truey
Meas y
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Today’s agenda

¢ Does the algorithm hold in practice with nonlinearity?
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Applications: building control

Space heating
Domestic hot water heating
Stationary electric battery

Stochastic disturbance and
measurement noise

Nonlinearity as disturbance

The same piece of code used with
little tuning (transferability)

Room 274

Room 273

The NEST building in Dibendorf, Switzerland
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Space heating
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e Experiment: 0.025°C-h constraint violation in 4 days
* High-fidelity simulation: 59% — 90% reduction in
constraint violation, 4% — 8% energy saving

Constraint violation [Kh]|

o N A OO @

E@Q

SMM-PC: proposed, N4SID: subspace ID, %\N’? V\&a\ %\,@x 06690
BiLevel: benchmark indirect DDPC, DeePC: direct DDPC
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Domestic hot water heating

o
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Jank avyg temp —— Water draw |
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¢ Very high uncertainty due to the lack of a water draw prediction model
¢ Infeasible at the decontamination point, but working the most of time
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Stationary electric battery

-3 [l Bk ] r=———————=—
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* Model-based control is also fine, but the data-driven method avoids parameter
estimation for the whole life cycle
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Future research directions

Bayesian perspective of behavioral systems theory
e WFL is based on binary characterization of system behaviors
¢ With stochastic data, you cannot falsify a trajectory completely
e Bayesian description: posterior probability of system behaviors given the data
¢ Unify prediction, denoising, and control

Exploration in data-driven predictive control
¢ |nput for minimizing future prediction errors
e Bayesian optimization, upper confidence bound policy?
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Future research directions

Nonlinear data-driven predictive control via Koopman operator
o WFL still valid on (inf-dim) eigenfunction space of nonlinear systems
¢ | earn dominant eigenfunction subspace and apply DDPC
¢ Difficulties: persistency of excitation, prediction error quantification
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ETH:irich

Optimal stochastic predictors in terms of MLE and minimum MSE
Prediction error quantified & chance constraint satisfaction by SOCP
Kalman filter to improve initial condition estimation

Works in multiple building control examples
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