Bachelor-/Masterthesis Data-Driven Predictive Control in Energy-Flexible Buildings

Large-scale integration of renewable energy resources provides demand-side flexibility that enables active control of various loads (e.g. HVAC) in the building sector. In this regard, data-driven approaches are preferred over model-based ones due to their reduced engineering effort and semi-automated procedures. In particular, data-driven predictive control has been proven effective and transferable in building applications.

Institut für Regelungstechnik Leibniz Universität Hannover

In this project, further aspects of applying data-driven predictive control to energy-flexible buildings are investigated. Possible research topics include 1) Benchmarking data-driven predictive control algorithms against machine-learning-based approaches, 2) interpreting data-driven predictive control decisions with decision tree models, and 3) investigating the susceptibility and potential defenses of data-driven controllers to data-injection attacks.

This project can be taken externally at Urban Energy Systems Lab, Empa in Dübendorf, Switzerland by applying the NCCR Automation Fellowship. The application deadline is 30th September 2024.

Prospective students should be familiar with optimization and have good programming maturity in Matlab or Python. Knowledge in data- and learning-based control, model predictive control, and system identification would be a plus.

© Werner Sobek.

Contact

Mingzhou Yin Institute of Automatic Control (IRT) Room A257, Appelstr. 11 E-Mail: yin@irt.uni-hannover.de Tel.: +49-511-762-18903